Experimental and field verifications of radial gates as flow measurement structures
Radial gates are common structures in irrigation projects. This paper presents some theory-based equations for explicit estimation of the discharge from a radial gate under free and submerged flow conditions using energy and momentum (E-M) principles. The proposed equations were calibrated using ext...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d9f53b6d9de5409997d0ae014d008c7f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d9f53b6d9de5409997d0ae014d008c7f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d9f53b6d9de5409997d0ae014d008c7f2021-11-06T10:08:38ZExperimental and field verifications of radial gates as flow measurement structures1606-97491607-079810.2166/ws.2021.071https://doaj.org/article/d9f53b6d9de5409997d0ae014d008c7f2021-09-01T00:00:00Zhttp://ws.iwaponline.com/content/21/6/3057https://doaj.org/toc/1606-9749https://doaj.org/toc/1607-0798Radial gates are common structures in irrigation projects. This paper presents some theory-based equations for explicit estimation of the discharge from a radial gate under free and submerged flow conditions using energy and momentum (E-M) principles. The proposed equations were calibrated using extensive experimental data collected from the literature and this study for three types of radial gate under free and submerged flow conditions. The submergence threshold of radial gates is concluded, based on the concepts of hydraulic jump and the intersection of free and submerged head-discharge curves. The results indicated that the error in estimating the discharge increases under transition ( − 2.5 ≤ Sr% ≤ + 2.5), gate lip (1 < y0/w ≤ 2), and high submerged (yt/y0 ≥ 0.95) flow conditions. However, in these flow limit conditions, the discharge error can be considerably decreased by adjusting the tailwater depth to flow depth just after the gate and using the energy equation for the sections before and after the gate. The efficiency of the proposed methods was evaluated based on the data series from field measurements of radial gates in 29 check structures at irrigation canals in the United States and Iran. The results showed that the discharge could be estimated using the proposed equations in field conditions with acceptable accuracy. HIGHLIGHTS Development of an analytical solution for estimating the discharge of radial gates under free and submerged flow conditions.; Evaluation of different methods for discharge estimating of radial gates.; Evaluation of different methods for identifying the flow condition.; Development of some analytical equations for submergence threshold of radial gates based on the concept of the intersection of free and submerged flow curves.;Hossein Khalili ShayanJavad FarhoudiAlireza VatankhahIWA Publishingarticledischargeenergy-momentum methodradial gatesubmergence thresholdWater supply for domestic and industrial purposesTD201-500River, lake, and water-supply engineering (General)TC401-506ENWater Supply, Vol 21, Iss 6, Pp 3057-3079 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
discharge energy-momentum method radial gate submergence threshold Water supply for domestic and industrial purposes TD201-500 River, lake, and water-supply engineering (General) TC401-506 |
spellingShingle |
discharge energy-momentum method radial gate submergence threshold Water supply for domestic and industrial purposes TD201-500 River, lake, and water-supply engineering (General) TC401-506 Hossein Khalili Shayan Javad Farhoudi Alireza Vatankhah Experimental and field verifications of radial gates as flow measurement structures |
description |
Radial gates are common structures in irrigation projects. This paper presents some theory-based equations for explicit estimation of the discharge from a radial gate under free and submerged flow conditions using energy and momentum (E-M) principles. The proposed equations were calibrated using extensive experimental data collected from the literature and this study for three types of radial gate under free and submerged flow conditions. The submergence threshold of radial gates is concluded, based on the concepts of hydraulic jump and the intersection of free and submerged head-discharge curves. The results indicated that the error in estimating the discharge increases under transition ( − 2.5 ≤ Sr% ≤ + 2.5), gate lip (1 < y0/w ≤ 2), and high submerged (yt/y0 ≥ 0.95) flow conditions. However, in these flow limit conditions, the discharge error can be considerably decreased by adjusting the tailwater depth to flow depth just after the gate and using the energy equation for the sections before and after the gate. The efficiency of the proposed methods was evaluated based on the data series from field measurements of radial gates in 29 check structures at irrigation canals in the United States and Iran. The results showed that the discharge could be estimated using the proposed equations in field conditions with acceptable accuracy. HIGHLIGHTS
Development of an analytical solution for estimating the discharge of radial gates under free and submerged flow conditions.;
Evaluation of different methods for discharge estimating of radial gates.;
Evaluation of different methods for identifying the flow condition.;
Development of some analytical equations for submergence threshold of radial gates based on the concept of the intersection of free and submerged flow curves.; |
format |
article |
author |
Hossein Khalili Shayan Javad Farhoudi Alireza Vatankhah |
author_facet |
Hossein Khalili Shayan Javad Farhoudi Alireza Vatankhah |
author_sort |
Hossein Khalili Shayan |
title |
Experimental and field verifications of radial gates as flow measurement structures |
title_short |
Experimental and field verifications of radial gates as flow measurement structures |
title_full |
Experimental and field verifications of radial gates as flow measurement structures |
title_fullStr |
Experimental and field verifications of radial gates as flow measurement structures |
title_full_unstemmed |
Experimental and field verifications of radial gates as flow measurement structures |
title_sort |
experimental and field verifications of radial gates as flow measurement structures |
publisher |
IWA Publishing |
publishDate |
2021 |
url |
https://doaj.org/article/d9f53b6d9de5409997d0ae014d008c7f |
work_keys_str_mv |
AT hosseinkhalilishayan experimentalandfieldverificationsofradialgatesasflowmeasurementstructures AT javadfarhoudi experimentalandfieldverificationsofradialgatesasflowmeasurementstructures AT alirezavatankhah experimentalandfieldverificationsofradialgatesasflowmeasurementstructures |
_version_ |
1718443823918481408 |