Clustering as an EDA method: the case of pedestrian directional flow behavior.

Given the data of pedestrian trajectories in NTXY format, three clustering methods of K Means, Expectation Maximization (EM) and Affinity Propagation were utilized as Exploratory Data Analysis to find the pattern of pedestrian directional flow behavior. The analysis begins without a prior notion reg...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kardi Teknomo, Ma. Regina E. Estuar
Formato: article
Lenguaje:EN
ES
Publicado: Universidad de San Buenaventura 2010
Materias:
Acceso en línea:https://doaj.org/article/da0196e4f7154d3b9d4d573eb04d3ab5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Given the data of pedestrian trajectories in NTXY format, three clustering methods of K Means, Expectation Maximization (EM) and Affinity Propagation were utilized as Exploratory Data Analysis to find the pattern of pedestrian directional flow behavior. The analysis begins without a prior notion regarding the structure of the pattern and it consequentially infers the structure of directional flow pattern. Significant similarities in patterns for both individual and instantaneous walking angles based on EDA method are reported and explained in case studies.