Clustering as an EDA method: the case of pedestrian directional flow behavior.

Given the data of pedestrian trajectories in NTXY format, three clustering methods of K Means, Expectation Maximization (EM) and Affinity Propagation were utilized as Exploratory Data Analysis to find the pattern of pedestrian directional flow behavior. The analysis begins without a prior notion reg...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Kardi Teknomo, Ma. Regina E. Estuar
Format: article
Langue:EN
ES
Publié: Universidad de San Buenaventura 2010
Sujets:
Accès en ligne:https://doaj.org/article/da0196e4f7154d3b9d4d573eb04d3ab5
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Given the data of pedestrian trajectories in NTXY format, three clustering methods of K Means, Expectation Maximization (EM) and Affinity Propagation were utilized as Exploratory Data Analysis to find the pattern of pedestrian directional flow behavior. The analysis begins without a prior notion regarding the structure of the pattern and it consequentially infers the structure of directional flow pattern. Significant similarities in patterns for both individual and instantaneous walking angles based on EDA method are reported and explained in case studies.