Clustering as an EDA method: the case of pedestrian directional flow behavior.

Given the data of pedestrian trajectories in NTXY format, three clustering methods of K Means, Expectation Maximization (EM) and Affinity Propagation were utilized as Exploratory Data Analysis to find the pattern of pedestrian directional flow behavior. The analysis begins without a prior notion reg...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kardi Teknomo, Ma. Regina E. Estuar
Formato: article
Lenguaje:EN
ES
Publicado: Universidad de San Buenaventura 2010
Materias:
Acceso en línea:https://doaj.org/article/da0196e4f7154d3b9d4d573eb04d3ab5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:da0196e4f7154d3b9d4d573eb04d3ab5
record_format dspace
spelling oai:doaj.org-article:da0196e4f7154d3b9d4d573eb04d3ab52021-11-25T02:24:06ZClustering as an EDA method: the case of pedestrian directional flow behavior.10.21500/20112084.8202011-20842011-7922https://doaj.org/article/da0196e4f7154d3b9d4d573eb04d3ab52010-06-01T00:00:00Zhttps://revistas.usb.edu.co/index.php/IJPR/article/view/820https://doaj.org/toc/2011-2084https://doaj.org/toc/2011-7922Given the data of pedestrian trajectories in NTXY format, three clustering methods of K Means, Expectation Maximization (EM) and Affinity Propagation were utilized as Exploratory Data Analysis to find the pattern of pedestrian directional flow behavior. The analysis begins without a prior notion regarding the structure of the pattern and it consequentially infers the structure of directional flow pattern. Significant similarities in patterns for both individual and instantaneous walking angles based on EDA method are reported and explained in case studies.Kardi TeknomoMa. Regina E. EstuarUniversidad de San BuenaventuraarticleGaussian Mixturedirectional flow patternpedestrian behaviortrajectory analysisPsychologyBF1-990ENESInternational Journal of Psychological Research, Vol 3, Iss 1 (2010)
institution DOAJ
collection DOAJ
language EN
ES
topic Gaussian Mixture
directional flow pattern
pedestrian behavior
trajectory analysis
Psychology
BF1-990
spellingShingle Gaussian Mixture
directional flow pattern
pedestrian behavior
trajectory analysis
Psychology
BF1-990
Kardi Teknomo
Ma. Regina E. Estuar
Clustering as an EDA method: the case of pedestrian directional flow behavior.
description Given the data of pedestrian trajectories in NTXY format, three clustering methods of K Means, Expectation Maximization (EM) and Affinity Propagation were utilized as Exploratory Data Analysis to find the pattern of pedestrian directional flow behavior. The analysis begins without a prior notion regarding the structure of the pattern and it consequentially infers the structure of directional flow pattern. Significant similarities in patterns for both individual and instantaneous walking angles based on EDA method are reported and explained in case studies.
format article
author Kardi Teknomo
Ma. Regina E. Estuar
author_facet Kardi Teknomo
Ma. Regina E. Estuar
author_sort Kardi Teknomo
title Clustering as an EDA method: the case of pedestrian directional flow behavior.
title_short Clustering as an EDA method: the case of pedestrian directional flow behavior.
title_full Clustering as an EDA method: the case of pedestrian directional flow behavior.
title_fullStr Clustering as an EDA method: the case of pedestrian directional flow behavior.
title_full_unstemmed Clustering as an EDA method: the case of pedestrian directional flow behavior.
title_sort clustering as an eda method: the case of pedestrian directional flow behavior.
publisher Universidad de San Buenaventura
publishDate 2010
url https://doaj.org/article/da0196e4f7154d3b9d4d573eb04d3ab5
work_keys_str_mv AT karditeknomo clusteringasanedamethodthecaseofpedestriandirectionalflowbehavior
AT mareginaeestuar clusteringasanedamethodthecaseofpedestriandirectionalflowbehavior
_version_ 1718414668924452864