Clustering as an EDA method: the case of pedestrian directional flow behavior.
Given the data of pedestrian trajectories in NTXY format, three clustering methods of K Means, Expectation Maximization (EM) and Affinity Propagation were utilized as Exploratory Data Analysis to find the pattern of pedestrian directional flow behavior. The analysis begins without a prior notion reg...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN ES |
Publicado: |
Universidad de San Buenaventura
2010
|
Materias: | |
Acceso en línea: | https://doaj.org/article/da0196e4f7154d3b9d4d573eb04d3ab5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:da0196e4f7154d3b9d4d573eb04d3ab5 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:da0196e4f7154d3b9d4d573eb04d3ab52021-11-25T02:24:06ZClustering as an EDA method: the case of pedestrian directional flow behavior.10.21500/20112084.8202011-20842011-7922https://doaj.org/article/da0196e4f7154d3b9d4d573eb04d3ab52010-06-01T00:00:00Zhttps://revistas.usb.edu.co/index.php/IJPR/article/view/820https://doaj.org/toc/2011-2084https://doaj.org/toc/2011-7922Given the data of pedestrian trajectories in NTXY format, three clustering methods of K Means, Expectation Maximization (EM) and Affinity Propagation were utilized as Exploratory Data Analysis to find the pattern of pedestrian directional flow behavior. The analysis begins without a prior notion regarding the structure of the pattern and it consequentially infers the structure of directional flow pattern. Significant similarities in patterns for both individual and instantaneous walking angles based on EDA method are reported and explained in case studies.Kardi TeknomoMa. Regina E. EstuarUniversidad de San BuenaventuraarticleGaussian Mixturedirectional flow patternpedestrian behaviortrajectory analysisPsychologyBF1-990ENESInternational Journal of Psychological Research, Vol 3, Iss 1 (2010) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN ES |
topic |
Gaussian Mixture directional flow pattern pedestrian behavior trajectory analysis Psychology BF1-990 |
spellingShingle |
Gaussian Mixture directional flow pattern pedestrian behavior trajectory analysis Psychology BF1-990 Kardi Teknomo Ma. Regina E. Estuar Clustering as an EDA method: the case of pedestrian directional flow behavior. |
description |
Given the data of pedestrian trajectories in NTXY format, three clustering methods of K Means, Expectation Maximization (EM) and Affinity Propagation were utilized as Exploratory Data Analysis to find the pattern of pedestrian directional flow behavior. The analysis begins without a prior notion regarding the structure of the pattern and it consequentially infers the structure of directional flow pattern. Significant similarities in patterns for both individual and instantaneous walking angles based on EDA method are reported and explained in case studies. |
format |
article |
author |
Kardi Teknomo Ma. Regina E. Estuar |
author_facet |
Kardi Teknomo Ma. Regina E. Estuar |
author_sort |
Kardi Teknomo |
title |
Clustering as an EDA method: the case of pedestrian directional flow behavior. |
title_short |
Clustering as an EDA method: the case of pedestrian directional flow behavior. |
title_full |
Clustering as an EDA method: the case of pedestrian directional flow behavior. |
title_fullStr |
Clustering as an EDA method: the case of pedestrian directional flow behavior. |
title_full_unstemmed |
Clustering as an EDA method: the case of pedestrian directional flow behavior. |
title_sort |
clustering as an eda method: the case of pedestrian directional flow behavior. |
publisher |
Universidad de San Buenaventura |
publishDate |
2010 |
url |
https://doaj.org/article/da0196e4f7154d3b9d4d573eb04d3ab5 |
work_keys_str_mv |
AT karditeknomo clusteringasanedamethodthecaseofpedestriandirectionalflowbehavior AT mareginaeestuar clusteringasanedamethodthecaseofpedestriandirectionalflowbehavior |
_version_ |
1718414668924452864 |