Clustering as an EDA method: the case of pedestrian directional flow behavior.
Given the data of pedestrian trajectories in NTXY format, three clustering methods of K Means, Expectation Maximization (EM) and Affinity Propagation were utilized as Exploratory Data Analysis to find the pattern of pedestrian directional flow behavior. The analysis begins without a prior notion reg...
Guardado en:
Autores principales: | Kardi Teknomo, Ma. Regina E. Estuar |
---|---|
Formato: | article |
Lenguaje: | EN ES |
Publicado: |
Universidad de San Buenaventura
2010
|
Materias: | |
Acceso en línea: | https://doaj.org/article/da0196e4f7154d3b9d4d573eb04d3ab5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Review of Deep Learning-Based Methods for Pedestrian Trajectory Prediction
por: Bogdan Ilie Sighencea, et al.
Publicado: (2021) -
On the Quality of Street Lighting in Pedestrian Crossings
por: Malgorzata Zalesinska, et al.
Publicado: (2021) -
Pedestrian dynamics on narrow pavements in high-density Hong Kong
por: John Zacharias
Publicado: (2021) -
Contextual analysis of pedestrian mobility in transport terminals
por: Joelma C.C. e Silva, et al.
Publicado: (2021) -
Kinetic and Kinematic Features of Pedestrian Avoidance Behavior in Motor Vehicle Conflicts
por: Quan Li, et al.
Publicado: (2021)