Clustering as an EDA method: the case of pedestrian directional flow behavior.
Given the data of pedestrian trajectories in NTXY format, three clustering methods of K Means, Expectation Maximization (EM) and Affinity Propagation were utilized as Exploratory Data Analysis to find the pattern of pedestrian directional flow behavior. The analysis begins without a prior notion reg...
Enregistré dans:
Auteurs principaux: | Kardi Teknomo, Ma. Regina E. Estuar |
---|---|
Format: | article |
Langue: | EN ES |
Publié: |
Universidad de San Buenaventura
2010
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/da0196e4f7154d3b9d4d573eb04d3ab5 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A Review of Deep Learning-Based Methods for Pedestrian Trajectory Prediction
par: Bogdan Ilie Sighencea, et autres
Publié: (2021) -
On the Quality of Street Lighting in Pedestrian Crossings
par: Malgorzata Zalesinska, et autres
Publié: (2021) -
Pedestrian dynamics on narrow pavements in high-density Hong Kong
par: John Zacharias
Publié: (2021) -
Contextual analysis of pedestrian mobility in transport terminals
par: Joelma C.C. e Silva, et autres
Publié: (2021) -
Kinetic and Kinematic Features of Pedestrian Avoidance Behavior in Motor Vehicle Conflicts
par: Quan Li, et autres
Publié: (2021)