Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture

ABSTRACT   Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Timothy A. Johnson, Robert D. Stedtfeld, Qiong Wang, James R. Cole, Syed A. Hashsham, Torey Looft, Yong-Guan Zhu, James M. Tiedje
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2016
Materias:
Acceso en línea:https://doaj.org/article/da146d2462a2499c915133b7b9a42bed
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:da146d2462a2499c915133b7b9a42bed
record_format dspace
spelling oai:doaj.org-article:da146d2462a2499c915133b7b9a42bed2021-11-15T15:41:41ZClusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture10.1128/mBio.02214-152150-7511https://doaj.org/article/da146d2462a2499c915133b7b9a42bed2016-05-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.02214-15https://doaj.org/toc/2150-7511ABSTRACT   Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundance of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk. IMPORTANCE Agricultural antibiotic use results in clusters of cooccurring resistance genes that together confer resistance to multiple antibiotics. The use of a single antibiotic could select for an entire suite of resistance genes if they are genetically linked. No links to bacterial membership were observed for these clusters of resistance genes. These findings urge deeper understanding of colocalization of resistance genes and mobile genetic elements in resistance islands and their distribution throughout antibiotic-exposed microbiomes. As governments seek to combat the rise in antibiotic resistance, a balance is sought between ensuring proper animal health and welfare and preserving medically important antibiotics for therapeutic use. Metagenomic and genomic monitoring will be critical to determine if resistance genes can be reduced in animal microbiomes, or if these gene clusters will continue to be coselected by antibiotics not deemed medically important for human health but used for growth promotion or by medically important antibiotics used therapeutically.Timothy A. JohnsonRobert D. StedtfeldQiong WangJames R. ColeSyed A. HashshamTorey LooftYong-Guan ZhuJames M. TiedjeAmerican Society for MicrobiologyarticleMicrobiologyQR1-502ENmBio, Vol 7, Iss 2 (2016)
institution DOAJ
collection DOAJ
language EN
topic Microbiology
QR1-502
spellingShingle Microbiology
QR1-502
Timothy A. Johnson
Robert D. Stedtfeld
Qiong Wang
James R. Cole
Syed A. Hashsham
Torey Looft
Yong-Guan Zhu
James M. Tiedje
Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture
description ABSTRACT   Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundance of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk. IMPORTANCE Agricultural antibiotic use results in clusters of cooccurring resistance genes that together confer resistance to multiple antibiotics. The use of a single antibiotic could select for an entire suite of resistance genes if they are genetically linked. No links to bacterial membership were observed for these clusters of resistance genes. These findings urge deeper understanding of colocalization of resistance genes and mobile genetic elements in resistance islands and their distribution throughout antibiotic-exposed microbiomes. As governments seek to combat the rise in antibiotic resistance, a balance is sought between ensuring proper animal health and welfare and preserving medically important antibiotics for therapeutic use. Metagenomic and genomic monitoring will be critical to determine if resistance genes can be reduced in animal microbiomes, or if these gene clusters will continue to be coselected by antibiotics not deemed medically important for human health but used for growth promotion or by medically important antibiotics used therapeutically.
format article
author Timothy A. Johnson
Robert D. Stedtfeld
Qiong Wang
James R. Cole
Syed A. Hashsham
Torey Looft
Yong-Guan Zhu
James M. Tiedje
author_facet Timothy A. Johnson
Robert D. Stedtfeld
Qiong Wang
James R. Cole
Syed A. Hashsham
Torey Looft
Yong-Guan Zhu
James M. Tiedje
author_sort Timothy A. Johnson
title Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture
title_short Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture
title_full Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture
title_fullStr Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture
title_full_unstemmed Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture
title_sort clusters of antibiotic resistance genes enriched together stay together in swine agriculture
publisher American Society for Microbiology
publishDate 2016
url https://doaj.org/article/da146d2462a2499c915133b7b9a42bed
work_keys_str_mv AT timothyajohnson clustersofantibioticresistancegenesenrichedtogetherstaytogetherinswineagriculture
AT robertdstedtfeld clustersofantibioticresistancegenesenrichedtogetherstaytogetherinswineagriculture
AT qiongwang clustersofantibioticresistancegenesenrichedtogetherstaytogetherinswineagriculture
AT jamesrcole clustersofantibioticresistancegenesenrichedtogetherstaytogetherinswineagriculture
AT syedahashsham clustersofantibioticresistancegenesenrichedtogetherstaytogetherinswineagriculture
AT toreylooft clustersofantibioticresistancegenesenrichedtogetherstaytogetherinswineagriculture
AT yongguanzhu clustersofantibioticresistancegenesenrichedtogetherstaytogetherinswineagriculture
AT jamesmtiedje clustersofantibioticresistancegenesenrichedtogetherstaytogetherinswineagriculture
_version_ 1718427674039287808