Predicting the compressive strength of self-compacting concrete using Elman artificial neural network with two different sets of input parameters
In recent years, artificial neural networks converted from a theoretical approach to the widely-used technology with successful applications to different problems. In fact, artificial neural networks are a powerful tool that give appropriate solutions to problems which are difficult to solve through...
Guardado en:
Autores principales: | Atefeh Gholamzadeh Chitgar, Javad Berenjian |
---|---|
Formato: | article |
Lenguaje: | FA |
Publicado: |
Iranian Society of Structrual Engineering (ISSE)
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/da163dab9cc5401aace7e208fe308f59 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A study on compressive strength, static and dynamic elastic modulus of self-compacted concrete contained nanomaterials
por: Rahmat Madandoust, et al.
Publicado: (2021) -
Investigating the Size Effect on the Compressive Strength of Self- Consolidating Concrete Containing Taftan Pumice and Micro-Silica
por: Seyed Roohollah Mousavi, et al.
Publicado: (2021) -
Modelling of compressive strength of self-compacting concrete containing fly ash by gene expression programming
por: Özgür Deneme,İbrahim
Publicado: (2020) -
Practical Evaluation of Using Lightweight Self-Compacting Concrete in Reinforced Concrete Constructions
por: hamed pourahmadi sefat arabani, et al.
Publicado: (2019) -
Effect of parent rock strength and water absorption on concrete compressive strength
por: رضوان ولی بیگی, et al.
Publicado: (2019)