Interleaved practice enhances memory and problem-solving ability in undergraduate physics
Abstract We investigated whether continuously alternating between topics during practice, or interleaved practice, improves memory and the ability to solve problems in undergraduate physics. Over 8 weeks, students in two lecture sections of a university-level introductory physics course completed th...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/da1dfb08ef7d4cd7a757a8dad0716c75 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:da1dfb08ef7d4cd7a757a8dad0716c75 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:da1dfb08ef7d4cd7a757a8dad0716c752021-11-14T12:24:40ZInterleaved practice enhances memory and problem-solving ability in undergraduate physics10.1038/s41539-021-00110-x2056-7936https://doaj.org/article/da1dfb08ef7d4cd7a757a8dad0716c752021-11-01T00:00:00Zhttps://doi.org/10.1038/s41539-021-00110-xhttps://doaj.org/toc/2056-7936Abstract We investigated whether continuously alternating between topics during practice, or interleaved practice, improves memory and the ability to solve problems in undergraduate physics. Over 8 weeks, students in two lecture sections of a university-level introductory physics course completed thrice-weekly homework assignments, each containing problems that were interleaved (i.e., alternating topics) or conventionally arranged (i.e., one topic practiced at a time). On two surprise criterial tests containing novel and more challenging problems, students recalled more relevant information and more frequently produced correct solutions after having engaged in interleaved practice (with observed median improvements of 50% on test 1 and 125% on test 2). Despite benefiting more from interleaved practice, students tended to rate the technique as more difficult and incorrectly believed that they learned less from it. Thus, in a domain that entails considerable amounts of problem-solving, replacing conventionally arranged with interleaved homework can (despite perceptions to the contrary) foster longer lasting and more generalizable learning.Joshua SamaniSteven C. PanNature PortfolioarticleSpecial aspects of educationLC8-6691Neurosciences. Biological psychiatry. NeuropsychiatryRC321-571ENnpj Science of Learning, Vol 6, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Special aspects of education LC8-6691 Neurosciences. Biological psychiatry. Neuropsychiatry RC321-571 |
spellingShingle |
Special aspects of education LC8-6691 Neurosciences. Biological psychiatry. Neuropsychiatry RC321-571 Joshua Samani Steven C. Pan Interleaved practice enhances memory and problem-solving ability in undergraduate physics |
description |
Abstract We investigated whether continuously alternating between topics during practice, or interleaved practice, improves memory and the ability to solve problems in undergraduate physics. Over 8 weeks, students in two lecture sections of a university-level introductory physics course completed thrice-weekly homework assignments, each containing problems that were interleaved (i.e., alternating topics) or conventionally arranged (i.e., one topic practiced at a time). On two surprise criterial tests containing novel and more challenging problems, students recalled more relevant information and more frequently produced correct solutions after having engaged in interleaved practice (with observed median improvements of 50% on test 1 and 125% on test 2). Despite benefiting more from interleaved practice, students tended to rate the technique as more difficult and incorrectly believed that they learned less from it. Thus, in a domain that entails considerable amounts of problem-solving, replacing conventionally arranged with interleaved homework can (despite perceptions to the contrary) foster longer lasting and more generalizable learning. |
format |
article |
author |
Joshua Samani Steven C. Pan |
author_facet |
Joshua Samani Steven C. Pan |
author_sort |
Joshua Samani |
title |
Interleaved practice enhances memory and problem-solving ability in undergraduate physics |
title_short |
Interleaved practice enhances memory and problem-solving ability in undergraduate physics |
title_full |
Interleaved practice enhances memory and problem-solving ability in undergraduate physics |
title_fullStr |
Interleaved practice enhances memory and problem-solving ability in undergraduate physics |
title_full_unstemmed |
Interleaved practice enhances memory and problem-solving ability in undergraduate physics |
title_sort |
interleaved practice enhances memory and problem-solving ability in undergraduate physics |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/da1dfb08ef7d4cd7a757a8dad0716c75 |
work_keys_str_mv |
AT joshuasamani interleavedpracticeenhancesmemoryandproblemsolvingabilityinundergraduatephysics AT stevencpan interleavedpracticeenhancesmemoryandproblemsolvingabilityinundergraduatephysics |
_version_ |
1718429260166725632 |