A new method combining LDA and PLS for dimension reduction.
Linear discriminant analysis (LDA) is a classical statistical approach for dimensionality reduction and classification. In many cases, the projection direction of the classical and extended LDA methods is not considered optimal for special applications. Herein we combine the Partial Least Squares (P...
Guardado en:
Autores principales: | Liang Tang, Silong Peng, Yiming Bi, Peng Shan, Xiyuan Hu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/da1f0ba2699846309ca5312911630bc9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An enhanced probabilistic LDA for multi-class brain computer interface.
por: Peng Xu, et al.
Publicado: (2011) -
Entities as Topic Labels: Combining Entity Linking and Labeled LDA to Improve Topic Interpretability and Evaluability
por: Anne Lauscher, et al.
Publicado: (2016) -
Using HJ-CCD image and PLS algorithm to estimate the yield of field-grown winter wheat
por: Peng-Peng Zhang, et al.
Publicado: (2020) -
Core-Level X-Ray Spectroscopy of Infinite-Layer Nickelate: LDA+DMFT Study
por: Keisuke Higashi, et al.
Publicado: (2021) -
SlimPLS: a method for feature selection in gene expression-based disease classification.
por: Michael Gutkin, et al.
Publicado: (2009)