Deep learning-based predictive identification of neural stem cell differentiation
The differentiation of neural stem cells (NSCs) into neurons is a critical part in devising potential cell-based therapeutic strategies for central nervous system diseases but NSCs fate determination and prediction is problematic. Here, the authors present a deep neural network model for predictable...
Guardado en:
Autores principales: | Yanjing Zhu, Ruiqi Huang, Zhourui Wu, Simin Song, Liming Cheng, Rongrong Zhu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/da227bc7fc00436695a10f09d781bd5b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Finding the Neural Net: Deep-learning Idiom Type Identification from Distributional Vectors
por: Yuri Bizzoni, et al.
Publicado: (2018) -
Deep learning and capsule endoscopy: automatic identification and differentiation of small bowel lesions with distinct haemorrhagic potential using a convolutional neural network
por: Guilherme Macedo, et al.
Publicado: (2021) -
Meta-neural-network for real-time and passive deep-learning-based object recognition
por: Jingkai Weng, et al.
Publicado: (2020) -
PCGF5 is required for neural differentiation of embryonic stem cells
por: Mingze Yao, et al.
Publicado: (2018) -
Converting tabular data into images for deep learning with convolutional neural networks
por: Yitan Zhu, et al.
Publicado: (2021)