GPCR_LigandClassify.py; a rigorous machine learning classifier for GPCR targeting compounds
Abstract The current study describes the construction of various ligand-based machine learning models to be used for drug-repurposing against the family of G-Protein Coupled Receptors (GPCRs). In building these models, we collected > 500,000 data points, encompassing experimentally measured molec...
Guardado en:
Autores principales: | Marawan Ahmed, Horia Jalily Hasani, Subha Kalyaanamoorthy, Khaled Barakat |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/da2917f1c99f40dfa02c9cff21fddc59 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Improved GPCR ligands from nanobody tethering
por: Ross W. Cheloha, et al.
Publicado: (2020) -
Structure-guided development of heterodimer-selective GPCR ligands
por: Harald Hübner, et al.
Publicado: (2016) -
Molecular evolution of a peptide GPCR ligand driven by artificial neural networks.
por: Sebastian Bandholtz, et al.
Publicado: (2012) -
Exploring use of unsupervised clustering to associate signaling profiles of GPCR ligands to clinical response
por: Besma Benredjem, et al.
Publicado: (2019) -
Selective targeting of ligand-dependent and -independent signaling by GPCR conformation-specific anti-US28 intrabodies
por: Timo W. M. De Groof, et al.
Publicado: (2021)