GPCR_LigandClassify.py; a rigorous machine learning classifier for GPCR targeting compounds
Abstract The current study describes the construction of various ligand-based machine learning models to be used for drug-repurposing against the family of G-Protein Coupled Receptors (GPCRs). In building these models, we collected > 500,000 data points, encompassing experimentally measured molec...
Enregistré dans:
Auteurs principaux: | Marawan Ahmed, Horia Jalily Hasani, Subha Kalyaanamoorthy, Khaled Barakat |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/da2917f1c99f40dfa02c9cff21fddc59 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Improved GPCR ligands from nanobody tethering
par: Ross W. Cheloha, et autres
Publié: (2020) -
Structure-guided development of heterodimer-selective GPCR ligands
par: Harald Hübner, et autres
Publié: (2016) -
Molecular evolution of a peptide GPCR ligand driven by artificial neural networks.
par: Sebastian Bandholtz, et autres
Publié: (2012) -
Exploring use of unsupervised clustering to associate signaling profiles of GPCR ligands to clinical response
par: Besma Benredjem, et autres
Publié: (2019) -
Selective targeting of ligand-dependent and -independent signaling by GPCR conformation-specific anti-US28 intrabodies
par: Timo W. M. De Groof, et autres
Publié: (2021)