Effect of flexible plates and micro-orifices on acoustic filter response for frequency-specific earplugs
In recent years, the use of earplugs with analog acoustic band pass filters has gained prominence. These earplugs can protect the ears of factory workers, who work in noisy environments, and simultaneously allow for necessary sounds such as colleagues' voices, danger alarms, and equipment-f...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
The Japan Society of Mechanical Engineers
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/da2aeeb1dba743868a6dc9934812f47b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:da2aeeb1dba743868a6dc9934812f47b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:da2aeeb1dba743868a6dc9934812f47b2021-11-29T06:02:35ZEffect of flexible plates and micro-orifices on acoustic filter response for frequency-specific earplugs2187-974510.1299/mej.19-00462https://doaj.org/article/da2aeeb1dba743868a6dc9934812f47b2020-11-01T00:00:00Zhttps://www.jstage.jst.go.jp/article/mej/7/6/7_19-00462/_pdf/-char/enhttps://doaj.org/toc/2187-9745In recent years, the use of earplugs with analog acoustic band pass filters has gained prominence. These earplugs can protect the ears of factory workers, who work in noisy environments, and simultaneously allow for necessary sounds such as colleagues' voices, danger alarms, and equipment-failure sounds to be heard. However, certain doubts still exist regarding the ability of these earplugs to protect the ears of the workers, particularly for low frequency ranges because of the relatively wide passing frequency ranges of sounds. From this standpoint, there exists a requirement for earplugs that can precisely control the passing amount and range of sounds in different working environments. Thus, we investigated an earplug with a simple lightweight structure, involving a filter consisting of a micro-orifice and flexible elastic plate. First, the frequency response of the proposed earplug was theoretically modeled using the transfer matrix method for each component. Second, the validity of the model was established experimentally, as confirmed by the results. Moreover, the proposed earplugs were confirmed to provide sufficient insulation against noise in a low frequency range and simultaneously allow for efficient passage of sounds in the range of 1–2 kHz. Further fine tuning can be expected by changing the detailed properties of the components.Akira SANADAHideki TAKASOThe Japan Society of Mechanical Engineersarticleearplugacoustic filterflexible platemicro-orificetransfer matrix methodhelmholtz resonanceMechanical engineering and machineryTJ1-1570ENMechanical Engineering Journal, Vol 7, Iss 6, Pp 19-00462-19-00462 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
earplug acoustic filter flexible plate micro-orifice transfer matrix method helmholtz resonance Mechanical engineering and machinery TJ1-1570 |
spellingShingle |
earplug acoustic filter flexible plate micro-orifice transfer matrix method helmholtz resonance Mechanical engineering and machinery TJ1-1570 Akira SANADA Hideki TAKASO Effect of flexible plates and micro-orifices on acoustic filter response for frequency-specific earplugs |
description |
In recent years, the use of earplugs with analog acoustic band pass filters has gained prominence. These earplugs can protect the ears of factory workers, who work in noisy environments, and simultaneously allow for necessary sounds such as colleagues' voices, danger alarms, and equipment-failure sounds to be heard. However, certain doubts still exist regarding the ability of these earplugs to protect the ears of the workers, particularly for low frequency ranges because of the relatively wide passing frequency ranges of sounds. From this standpoint, there exists a requirement for earplugs that can precisely control the passing amount and range of sounds in different working environments. Thus, we investigated an earplug with a simple lightweight structure, involving a filter consisting of a micro-orifice and flexible elastic plate. First, the frequency response of the proposed earplug was theoretically modeled using the transfer matrix method for each component. Second, the validity of the model was established experimentally, as confirmed by the results. Moreover, the proposed earplugs were confirmed to provide sufficient insulation against noise in a low frequency range and simultaneously allow for efficient passage of sounds in the range of 1–2 kHz. Further fine tuning can be expected by changing the detailed properties of the components. |
format |
article |
author |
Akira SANADA Hideki TAKASO |
author_facet |
Akira SANADA Hideki TAKASO |
author_sort |
Akira SANADA |
title |
Effect of flexible plates and micro-orifices on acoustic filter response for frequency-specific earplugs |
title_short |
Effect of flexible plates and micro-orifices on acoustic filter response for frequency-specific earplugs |
title_full |
Effect of flexible plates and micro-orifices on acoustic filter response for frequency-specific earplugs |
title_fullStr |
Effect of flexible plates and micro-orifices on acoustic filter response for frequency-specific earplugs |
title_full_unstemmed |
Effect of flexible plates and micro-orifices on acoustic filter response for frequency-specific earplugs |
title_sort |
effect of flexible plates and micro-orifices on acoustic filter response for frequency-specific earplugs |
publisher |
The Japan Society of Mechanical Engineers |
publishDate |
2020 |
url |
https://doaj.org/article/da2aeeb1dba743868a6dc9934812f47b |
work_keys_str_mv |
AT akirasanada effectofflexibleplatesandmicroorificesonacousticfilterresponseforfrequencyspecificearplugs AT hidekitakaso effectofflexibleplatesandmicroorificesonacousticfilterresponseforfrequencyspecificearplugs |
_version_ |
1718407615533285376 |