Orchestrating and sharing large multimodal data for transparent and reproducible research

It is no secret that a significant part of scientific research is difficult to reproduce. Here, the authors present a cloud-computing platform called ORCESTRA that facilitates reproducible processing of multimodal biomedical data using customizable pipelines and well-documented data objects.

Guardado en:
Detalles Bibliográficos
Autores principales: Anthony Mammoliti, Petr Smirnov, Minoru Nakano, Zhaleh Safikhani, Christopher Eeles, Heewon Seo, Sisira Kadambat Nair, Arvind S. Mer, Ian Smith, Chantal Ho, Gangesh Beri, Rebecca Kusko, Massive Analysis Quality Control (MAQC) Society Board of Directors, Eva Lin, Yihong Yu, Scott Martin, Marc Hafner, Benjamin Haibe-Kains
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/da2c696db1874e349ef2975f7942b0cf
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:da2c696db1874e349ef2975f7942b0cf
record_format dspace
spelling oai:doaj.org-article:da2c696db1874e349ef2975f7942b0cf2021-12-02T18:37:16ZOrchestrating and sharing large multimodal data for transparent and reproducible research10.1038/s41467-021-25974-w2041-1723https://doaj.org/article/da2c696db1874e349ef2975f7942b0cf2021-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25974-whttps://doaj.org/toc/2041-1723It is no secret that a significant part of scientific research is difficult to reproduce. Here, the authors present a cloud-computing platform called ORCESTRA that facilitates reproducible processing of multimodal biomedical data using customizable pipelines and well-documented data objects.Anthony MammolitiPetr SmirnovMinoru NakanoZhaleh SafikhaniChristopher EelesHeewon SeoSisira Kadambat NairArvind S. MerIan SmithChantal HoGangesh BeriRebecca KuskoMassive Analysis Quality Control (MAQC) Society Board of DirectorsEva LinYihong YuScott MartinMarc HafnerBenjamin Haibe-KainsNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Anthony Mammoliti
Petr Smirnov
Minoru Nakano
Zhaleh Safikhani
Christopher Eeles
Heewon Seo
Sisira Kadambat Nair
Arvind S. Mer
Ian Smith
Chantal Ho
Gangesh Beri
Rebecca Kusko
Massive Analysis Quality Control (MAQC) Society Board of Directors
Eva Lin
Yihong Yu
Scott Martin
Marc Hafner
Benjamin Haibe-Kains
Orchestrating and sharing large multimodal data for transparent and reproducible research
description It is no secret that a significant part of scientific research is difficult to reproduce. Here, the authors present a cloud-computing platform called ORCESTRA that facilitates reproducible processing of multimodal biomedical data using customizable pipelines and well-documented data objects.
format article
author Anthony Mammoliti
Petr Smirnov
Minoru Nakano
Zhaleh Safikhani
Christopher Eeles
Heewon Seo
Sisira Kadambat Nair
Arvind S. Mer
Ian Smith
Chantal Ho
Gangesh Beri
Rebecca Kusko
Massive Analysis Quality Control (MAQC) Society Board of Directors
Eva Lin
Yihong Yu
Scott Martin
Marc Hafner
Benjamin Haibe-Kains
author_facet Anthony Mammoliti
Petr Smirnov
Minoru Nakano
Zhaleh Safikhani
Christopher Eeles
Heewon Seo
Sisira Kadambat Nair
Arvind S. Mer
Ian Smith
Chantal Ho
Gangesh Beri
Rebecca Kusko
Massive Analysis Quality Control (MAQC) Society Board of Directors
Eva Lin
Yihong Yu
Scott Martin
Marc Hafner
Benjamin Haibe-Kains
author_sort Anthony Mammoliti
title Orchestrating and sharing large multimodal data for transparent and reproducible research
title_short Orchestrating and sharing large multimodal data for transparent and reproducible research
title_full Orchestrating and sharing large multimodal data for transparent and reproducible research
title_fullStr Orchestrating and sharing large multimodal data for transparent and reproducible research
title_full_unstemmed Orchestrating and sharing large multimodal data for transparent and reproducible research
title_sort orchestrating and sharing large multimodal data for transparent and reproducible research
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/da2c696db1874e349ef2975f7942b0cf
work_keys_str_mv AT anthonymammoliti orchestratingandsharinglargemultimodaldatafortransparentandreproducibleresearch
AT petrsmirnov orchestratingandsharinglargemultimodaldatafortransparentandreproducibleresearch
AT minorunakano orchestratingandsharinglargemultimodaldatafortransparentandreproducibleresearch
AT zhalehsafikhani orchestratingandsharinglargemultimodaldatafortransparentandreproducibleresearch
AT christophereeles orchestratingandsharinglargemultimodaldatafortransparentandreproducibleresearch
AT heewonseo orchestratingandsharinglargemultimodaldatafortransparentandreproducibleresearch
AT sisirakadambatnair orchestratingandsharinglargemultimodaldatafortransparentandreproducibleresearch
AT arvindsmer orchestratingandsharinglargemultimodaldatafortransparentandreproducibleresearch
AT iansmith orchestratingandsharinglargemultimodaldatafortransparentandreproducibleresearch
AT chantalho orchestratingandsharinglargemultimodaldatafortransparentandreproducibleresearch
AT gangeshberi orchestratingandsharinglargemultimodaldatafortransparentandreproducibleresearch
AT rebeccakusko orchestratingandsharinglargemultimodaldatafortransparentandreproducibleresearch
AT massiveanalysisqualitycontrolmaqcsocietyboardofdirectors orchestratingandsharinglargemultimodaldatafortransparentandreproducibleresearch
AT evalin orchestratingandsharinglargemultimodaldatafortransparentandreproducibleresearch
AT yihongyu orchestratingandsharinglargemultimodaldatafortransparentandreproducibleresearch
AT scottmartin orchestratingandsharinglargemultimodaldatafortransparentandreproducibleresearch
AT marchafner orchestratingandsharinglargemultimodaldatafortransparentandreproducibleresearch
AT benjaminhaibekains orchestratingandsharinglargemultimodaldatafortransparentandreproducibleresearch
_version_ 1718377831051821056