Orchestrating and sharing large multimodal data for transparent and reproducible research
It is no secret that a significant part of scientific research is difficult to reproduce. Here, the authors present a cloud-computing platform called ORCESTRA that facilitates reproducible processing of multimodal biomedical data using customizable pipelines and well-documented data objects.
Guardado en:
Autores principales: | Anthony Mammoliti, Petr Smirnov, Minoru Nakano, Zhaleh Safikhani, Christopher Eeles, Heewon Seo, Sisira Kadambat Nair, Arvind S. Mer, Ian Smith, Chantal Ho, Gangesh Beri, Rebecca Kusko, Massive Analysis Quality Control (MAQC) Society Board of Directors, Eva Lin, Yihong Yu, Scott Martin, Marc Hafner, Benjamin Haibe-Kains |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/da2c696db1874e349ef2975f7942b0cf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Gene isoforms as expression-based biomarkers predictive of drug response in vitro
por: Zhaleh Safikhani, et al.
Publicado: (2017) -
Author Correction: Gene isoforms as expression-based biomarkers predictive of drug response in vitro
por: Zhaleh Safikhani, et al.
Publicado: (2018) -
In memoriam Dr. Josep Maria Queraltó, esteemed member of the SEQCML for 35 years
por: Board of Directors of the Spanish Society of Laboratory Medicine
Publicado: (2020) -
Biological and therapeutic implications of a unique subtype of NPM1 mutated AML
por: Arvind Singh Mer, et al.
Publicado: (2021) -
Neutrophils Orchestrate the Periodontal Pocket
por: Ljubomir Vitkov, et al.
Publicado: (2021)