Water Flow Forecasting Based on River Tributaries Using Long Short-Term Memory Ensemble Model
Water flow forecasts are an essential information for energy production, management and hydropower control. Advanced actions to optimize electricity production can be taken based on predicted information. This work proposes an ensemble strategy using recurrent neural networks to generate a forecast...
Guardado en:
Autores principales: | Diogo F. Costa Silva, Arlindo R. Galvão Filho, Rafael V. Carvalho, Filipe de Souza L. Ribeiro, Clarimar J. Coelho |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/da34ca9e167549f990f5e9fef757e55f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Multiscale Electricity Price Forecasting Model Based on Tensor Fusion and Deep Learning
por: Xiaoming Xie, et al.
Publicado: (2021) -
The Concept of Using LSTM to Detect Moisture in Brick Walls by Means of Electrical Impedance Tomography
por: Grzegorz Kłosowski, et al.
Publicado: (2021) -
Sentiment Analysis in Twitter Based on Knowledge Graph and Deep Learning Classification
por: Fernando Andres Lovera, et al.
Publicado: (2021) -
Comparison of Machine Learning Methods for Image Reconstruction Using the LSTM Classifier in Industrial Electrical Tomography
por: Grzegorz Kłosowski, et al.
Publicado: (2021) -
Forecasting vehicle accelerations using LSTM
por: Takeyuki ONO, et al.
Publicado: (2021)