Molecular form and concentration of serum α2-macroglobulin in diabetes
Abstract α2-Macroglobulin is a highly abundant serum protein involved in the development of atherosclerosis and cardiac hypertrophy. However, its circulating molecular form and exact concentrations in human health/diseases are not known. Blue native-polyacrylamide gel electrophoresis of human serum...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/da3897731279429caa67aecf7d6b1bec |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract α2-Macroglobulin is a highly abundant serum protein involved in the development of atherosclerosis and cardiac hypertrophy. However, its circulating molecular form and exact concentrations in human health/diseases are not known. Blue native-polyacrylamide gel electrophoresis of human serum was used to confirm the native conformation of α2-macroglobulin. We created an enzyme-linked immunosorbent assay suitable for quantifying its circulating molecular form and undertook a cross-sectional study to measure its serum levels in 248 patients with diabetes mellitus and 59 healthy volunteers. The predominant circulating molecular form of α2-macroglobulin was the tetramer, whereas its dimer was detectable in patients with high serum levels of α2-macroglobulin. The serum α2-macroglobulin concentration was not associated with glycated hemoglobin or any other glycemic variable as evaluated from 48-h continuous glucose monitoring, but showed close correlation with left ventricular posterior wall thickness, carotid artery intima-media thickness, urinary albumin:creatinine ratio (ACR) and brachial–ankle pulse wave velocity (baPWV). Multivariate analysis revealed only the ACR and baPWV to be independent variables influencing serum levels of α2-macroglobulin. Thus, an increased ACR and baPWV are associated with higher serum concentrations of α2-macroglobulin, and the latter may contribute to the mechanism by which albuminuria increases the risk of developing cardiovascular diseases. |
---|