Probing superheavy dark matter with gravitational waves

Abstract We study the superheavy dark matter (DM) scenario in an extended B−L model, where one generation of right-handed neutrino ν R is the DM candidate. If there is a new lighter sterile neutrino that co-annihilate with the DM candidate, then the annihilation rate is exponentially enhanced, allow...

Full description

Saved in:
Bibliographic Details
Main Authors: Ligong Bian, Xuewen Liu, Ke-Pan Xie
Format: article
Language:EN
Published: SpringerOpen 2021
Subjects:
Online Access:https://doaj.org/article/da3f5e7ea2f1481abca7868f0d1bc3c2
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract We study the superheavy dark matter (DM) scenario in an extended B−L model, where one generation of right-handed neutrino ν R is the DM candidate. If there is a new lighter sterile neutrino that co-annihilate with the DM candidate, then the annihilation rate is exponentially enhanced, allowing a DM mass much heavier than the Griest-Kamionkowski bound (∼105 GeV). We demonstrate that a DM mass M νR ≳ 1013 GeV can be achieved. Although beyond the scale of any traditional DM searching strategy, this scenario is testable via gravitational waves (GWs) emitted by the cosmic strings from the U(1) B−L breaking. Quantitative calculations show that the DM mass O $$ \mathcal{O} $$ (109−1013 GeV) can be probed by future GW detectors.