Classification algorithm for congenital Zika Syndrome: characterizations, diagnosis and validation

Abstract Zika virus was responsible for the microcephaly epidemic in Brazil which began in October 2015 and brought great challenges to the scientific community and health professionals in terms of diagnosis and classification. Due to the difficulties in correctly identifying Zika cases, it is neces...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rafael V. Veiga, Lavinia Schuler-Faccini, Giovanny V. A. França, Roberto F. S. Andrade, Maria Glória Teixeira, Larissa C. Costa, Enny S. Paixão, Maria da Conceição N. Costa, Maurício L. Barreto, Juliane F. Oliveira, Wanderson K. Oliveira, Luciana L. Cardim, Moreno S. Rodrigues
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/da4dfb4c20ba4f44a18f76a6fdf28499
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:da4dfb4c20ba4f44a18f76a6fdf28499
record_format dspace
spelling oai:doaj.org-article:da4dfb4c20ba4f44a18f76a6fdf284992021-12-02T17:04:06ZClassification algorithm for congenital Zika Syndrome: characterizations, diagnosis and validation10.1038/s41598-021-86361-52045-2322https://doaj.org/article/da4dfb4c20ba4f44a18f76a6fdf284992021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-86361-5https://doaj.org/toc/2045-2322Abstract Zika virus was responsible for the microcephaly epidemic in Brazil which began in October 2015 and brought great challenges to the scientific community and health professionals in terms of diagnosis and classification. Due to the difficulties in correctly identifying Zika cases, it is necessary to develop an automatic procedure to classify the probability of a CZS case from the clinical data. This work presents a machine learning algorithm capable of achieving this from structured and unstructured available data. The proposed algorithm reached 83% accuracy with textual information in medical records and image reports and 76% accuracy in classifying data without textual information. Therefore, the proposed algorithm has the potential to classify CZS cases in order to clarify the real effects of this epidemic, as well as to contribute to health surveillance in monitoring possible future epidemics.Rafael V. VeigaLavinia Schuler-FacciniGiovanny V. A. FrançaRoberto F. S. AndradeMaria Glória TeixeiraLarissa C. CostaEnny S. PaixãoMaria da Conceição N. CostaMaurício L. BarretoJuliane F. OliveiraWanderson K. OliveiraLuciana L. CardimMoreno S. RodriguesNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-7 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Rafael V. Veiga
Lavinia Schuler-Faccini
Giovanny V. A. França
Roberto F. S. Andrade
Maria Glória Teixeira
Larissa C. Costa
Enny S. Paixão
Maria da Conceição N. Costa
Maurício L. Barreto
Juliane F. Oliveira
Wanderson K. Oliveira
Luciana L. Cardim
Moreno S. Rodrigues
Classification algorithm for congenital Zika Syndrome: characterizations, diagnosis and validation
description Abstract Zika virus was responsible for the microcephaly epidemic in Brazil which began in October 2015 and brought great challenges to the scientific community and health professionals in terms of diagnosis and classification. Due to the difficulties in correctly identifying Zika cases, it is necessary to develop an automatic procedure to classify the probability of a CZS case from the clinical data. This work presents a machine learning algorithm capable of achieving this from structured and unstructured available data. The proposed algorithm reached 83% accuracy with textual information in medical records and image reports and 76% accuracy in classifying data without textual information. Therefore, the proposed algorithm has the potential to classify CZS cases in order to clarify the real effects of this epidemic, as well as to contribute to health surveillance in monitoring possible future epidemics.
format article
author Rafael V. Veiga
Lavinia Schuler-Faccini
Giovanny V. A. França
Roberto F. S. Andrade
Maria Glória Teixeira
Larissa C. Costa
Enny S. Paixão
Maria da Conceição N. Costa
Maurício L. Barreto
Juliane F. Oliveira
Wanderson K. Oliveira
Luciana L. Cardim
Moreno S. Rodrigues
author_facet Rafael V. Veiga
Lavinia Schuler-Faccini
Giovanny V. A. França
Roberto F. S. Andrade
Maria Glória Teixeira
Larissa C. Costa
Enny S. Paixão
Maria da Conceição N. Costa
Maurício L. Barreto
Juliane F. Oliveira
Wanderson K. Oliveira
Luciana L. Cardim
Moreno S. Rodrigues
author_sort Rafael V. Veiga
title Classification algorithm for congenital Zika Syndrome: characterizations, diagnosis and validation
title_short Classification algorithm for congenital Zika Syndrome: characterizations, diagnosis and validation
title_full Classification algorithm for congenital Zika Syndrome: characterizations, diagnosis and validation
title_fullStr Classification algorithm for congenital Zika Syndrome: characterizations, diagnosis and validation
title_full_unstemmed Classification algorithm for congenital Zika Syndrome: characterizations, diagnosis and validation
title_sort classification algorithm for congenital zika syndrome: characterizations, diagnosis and validation
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/da4dfb4c20ba4f44a18f76a6fdf28499
work_keys_str_mv AT rafaelvveiga classificationalgorithmforcongenitalzikasyndromecharacterizationsdiagnosisandvalidation
AT laviniaschulerfaccini classificationalgorithmforcongenitalzikasyndromecharacterizationsdiagnosisandvalidation
AT giovannyvafranca classificationalgorithmforcongenitalzikasyndromecharacterizationsdiagnosisandvalidation
AT robertofsandrade classificationalgorithmforcongenitalzikasyndromecharacterizationsdiagnosisandvalidation
AT mariagloriateixeira classificationalgorithmforcongenitalzikasyndromecharacterizationsdiagnosisandvalidation
AT larissaccosta classificationalgorithmforcongenitalzikasyndromecharacterizationsdiagnosisandvalidation
AT ennyspaixao classificationalgorithmforcongenitalzikasyndromecharacterizationsdiagnosisandvalidation
AT mariadaconceicaoncosta classificationalgorithmforcongenitalzikasyndromecharacterizationsdiagnosisandvalidation
AT mauriciolbarreto classificationalgorithmforcongenitalzikasyndromecharacterizationsdiagnosisandvalidation
AT julianefoliveira classificationalgorithmforcongenitalzikasyndromecharacterizationsdiagnosisandvalidation
AT wandersonkoliveira classificationalgorithmforcongenitalzikasyndromecharacterizationsdiagnosisandvalidation
AT lucianalcardim classificationalgorithmforcongenitalzikasyndromecharacterizationsdiagnosisandvalidation
AT morenosrodrigues classificationalgorithmforcongenitalzikasyndromecharacterizationsdiagnosisandvalidation
_version_ 1718381879638360064