Optimization of Magneto-thermally Controlled Release Kinetics by Tuning of Magnetoliposome Composition and Structure
Abstract Stealth (PEGylated) liposomes have taken a central role in drug formulation and delivery combining efficient transport with low nonspecific interactions. Controlling rapid release at a certain location and time remains a challenge dependent on environmental factors. We demonstrate a highly...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/da4f6f0bcceb495da9b134fcc79c6739 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:da4f6f0bcceb495da9b134fcc79c6739 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:da4f6f0bcceb495da9b134fcc79c67392021-12-02T16:07:57ZOptimization of Magneto-thermally Controlled Release Kinetics by Tuning of Magnetoliposome Composition and Structure10.1038/s41598-017-06980-92045-2322https://doaj.org/article/da4f6f0bcceb495da9b134fcc79c67392017-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-06980-9https://doaj.org/toc/2045-2322Abstract Stealth (PEGylated) liposomes have taken a central role in drug formulation and delivery combining efficient transport with low nonspecific interactions. Controlling rapid release at a certain location and time remains a challenge dependent on environmental factors. We demonstrate a highly efficient and scalable way to produce liposomes of any lipid composition containing homogeneously dispersed monodisperse superparamagnetic iron oxide nanoparticles in the membrane interior. We investigate the effect of lipid composition, particle concentration and magnetic field actuation on colloidal stability, magneto-thermally actuated release and passive release rates. We show that the rate and amount of encapsulated hydrophilic compound released by actuation using alternating magnetic fields can be precisely controlled from stealth liposomes with high membrane melting temperature. Extraordinarily low passive release and temperature sensitivity at body temperature makes this a promising encapsulation and external-trigger-on-demand release system. The introduced feature can be used as an add-on to existing stealth liposome drug delivery technology.Behzad Shirmardi ShaghasemiMudassar Mumtaz VirkErik ReimhultNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-10 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Behzad Shirmardi Shaghasemi Mudassar Mumtaz Virk Erik Reimhult Optimization of Magneto-thermally Controlled Release Kinetics by Tuning of Magnetoliposome Composition and Structure |
description |
Abstract Stealth (PEGylated) liposomes have taken a central role in drug formulation and delivery combining efficient transport with low nonspecific interactions. Controlling rapid release at a certain location and time remains a challenge dependent on environmental factors. We demonstrate a highly efficient and scalable way to produce liposomes of any lipid composition containing homogeneously dispersed monodisperse superparamagnetic iron oxide nanoparticles in the membrane interior. We investigate the effect of lipid composition, particle concentration and magnetic field actuation on colloidal stability, magneto-thermally actuated release and passive release rates. We show that the rate and amount of encapsulated hydrophilic compound released by actuation using alternating magnetic fields can be precisely controlled from stealth liposomes with high membrane melting temperature. Extraordinarily low passive release and temperature sensitivity at body temperature makes this a promising encapsulation and external-trigger-on-demand release system. The introduced feature can be used as an add-on to existing stealth liposome drug delivery technology. |
format |
article |
author |
Behzad Shirmardi Shaghasemi Mudassar Mumtaz Virk Erik Reimhult |
author_facet |
Behzad Shirmardi Shaghasemi Mudassar Mumtaz Virk Erik Reimhult |
author_sort |
Behzad Shirmardi Shaghasemi |
title |
Optimization of Magneto-thermally Controlled Release Kinetics by Tuning of Magnetoliposome Composition and Structure |
title_short |
Optimization of Magneto-thermally Controlled Release Kinetics by Tuning of Magnetoliposome Composition and Structure |
title_full |
Optimization of Magneto-thermally Controlled Release Kinetics by Tuning of Magnetoliposome Composition and Structure |
title_fullStr |
Optimization of Magneto-thermally Controlled Release Kinetics by Tuning of Magnetoliposome Composition and Structure |
title_full_unstemmed |
Optimization of Magneto-thermally Controlled Release Kinetics by Tuning of Magnetoliposome Composition and Structure |
title_sort |
optimization of magneto-thermally controlled release kinetics by tuning of magnetoliposome composition and structure |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/da4f6f0bcceb495da9b134fcc79c6739 |
work_keys_str_mv |
AT behzadshirmardishaghasemi optimizationofmagnetothermallycontrolledreleasekineticsbytuningofmagnetoliposomecompositionandstructure AT mudassarmumtazvirk optimizationofmagnetothermallycontrolledreleasekineticsbytuningofmagnetoliposomecompositionandstructure AT erikreimhult optimizationofmagnetothermallycontrolledreleasekineticsbytuningofmagnetoliposomecompositionandstructure |
_version_ |
1718384687137685504 |