Enhanced performance of Dark-Nets for brain tumor classification and segmentation using colormap-based superpixel techniques
The brain tumor is the deadliest disease in adults as it arises due to an abnormal mass of cells that grows rapidly and it alters the proper functioning of the organs. In clinical practice, radiographic images of different modalities are used to diagnose types of brain tumors, their size, and locati...
Guardado en:
Autores principales: | Sakshi Ahuja, Bijaya Ketan Panigrahi, Tapan Kumar Gandhi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://doaj.org/article/da57e86a318042229067a721d96f8f65 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Application Research on Optimization Algorithm of sEMG Gesture Recognition Based on Light CNN+LSTM Model
por: Dianchun Bai, et al.
Publicado: (2021) -
Brain Tumor Segmentation of MRI Images Using Processed Image Driven U-Net Architecture
por: Anuja Arora, et al.
Publicado: (2021) -
Using Rounding Errors in Modern Computer Technologies
por: Valerii Zadiraka, et al.
Publicado: (2021) -
Effective forecasting of key features in hospital emergency department: Hybrid deep learning-driven methods
por: Fouzi Harrou, et al.
Publicado: (2022) -
Segmentation of Rat Brains and Cerebral Hemispheres in Triphenyltetrazolium Chloride-Stained Images after Stroke
por: Herng-Hua Chang, et al.
Publicado: (2021)