Enhanced performance of Dark-Nets for brain tumor classification and segmentation using colormap-based superpixel techniques
The brain tumor is the deadliest disease in adults as it arises due to an abnormal mass of cells that grows rapidly and it alters the proper functioning of the organs. In clinical practice, radiographic images of different modalities are used to diagnose types of brain tumors, their size, and locati...
Enregistré dans:
Auteurs principaux: | Sakshi Ahuja, Bijaya Ketan Panigrahi, Tapan Kumar Gandhi |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2022
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/da57e86a318042229067a721d96f8f65 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Application Research on Optimization Algorithm of sEMG Gesture Recognition Based on Light CNN+LSTM Model
par: Dianchun Bai, et autres
Publié: (2021) -
Brain Tumor Segmentation of MRI Images Using Processed Image Driven U-Net Architecture
par: Anuja Arora, et autres
Publié: (2021) -
Using Rounding Errors in Modern Computer Technologies
par: Valerii Zadiraka, et autres
Publié: (2021) -
Effective forecasting of key features in hospital emergency department: Hybrid deep learning-driven methods
par: Fouzi Harrou, et autres
Publié: (2022) -
Segmentation of Rat Brains and Cerebral Hemispheres in Triphenyltetrazolium Chloride-Stained Images after Stroke
par: Herng-Hua Chang, et autres
Publié: (2021)