Automatic classification of canine thoracic radiographs using deep learning
Abstract The interpretation of thoracic radiographs is a challenging and error-prone task for veterinarians. Despite recent advancements in machine learning and computer vision, the development of computer-aided diagnostic systems for radiographs remains a challenging and unsolved problem, particula...
Guardado en:
Autores principales: | Tommaso Banzato, Marek Wodzinski, Silvia Burti, Valentina Longhin Osti, Valentina Rossoni, Manfredo Atzori, Alessandro Zotti |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/da5a472551f64eec84e60932f09ad09d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Diagnostic Accuracy of Delayed Phase Post Contrast Computed Tomographic Images in the Diagnosis of Focal Liver Lesions in Dogs: 69 Cases
por: Silvia Burti, et al.
Publicado: (2021) -
Corrigendum: Diagnostic Accuracy of Delayed Phase Post Contrast Computed Tomographic Images in the Diagnosis of Focal Liver Lesions in Dogs: 69 Cases
por: Silvia Burti, et al.
Publicado: (2021) -
Deep learning for classification of pediatric chest radiographs by WHO's standardized methodology.
por: Yiyun Chen, et al.
Publicado: (2021) -
Classification of caries in third molars on panoramic radiographs using deep learning
por: Shankeeth Vinayahalingam, et al.
Publicado: (2021) -
Deep learning approach for automatic landmark detection and alignment analysis in whole-spine lateral radiographs
por: Yu-Cheng Yeh, et al.
Publicado: (2021)