Deep Learning-based Sentiment Analysis and Topic Modeling on Tourism During Covid-19 Pandemic
The Covid-19 pandemic has disrupted the world economy and significantly influenced the tourism industry. Millions of people have shared their emotions, views, facts, and circumstances on numerous social media platforms, which has resulted in a massive flow of information. The high-density social med...
Guardado en:
Autores principales: | Ram Krishn Mishra, Siddhaling Urolagin, J. Angel Arul Jothi, Ashwin Sanjay Neogi, Nishad Nawaz |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/da63d87333934d989a352c3a04a1c2d7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Topic-Based Document-Level Sentiment Analysis Using Contextual Cues
por: Ciprian-Octavian Truică, et al.
Publicado: (2021) -
Performance Study of N-grams in the Analysis of Sentiments
por: O. E. Ojo, et al.
Publicado: (2021) -
Arabic Aspect-Based Sentiment Analysis: A Systematic Literature Review
por: Ruba Obiedat, et al.
Publicado: (2021) -
Deep Bidirectional LSTM Network Learning-Based Sentiment Analysis for Arabic Text
por: Elfaik Hanane, et al.
Publicado: (2020) -
Improving sentiment analysis in Arabic: A combined approach
por: Belgacem Brahimi, et al.
Publicado: (2021)