Refining the Distributional Inclusion Hypothesis for Unsupervised Hypernym Identification

Several unsupervised methods for hypernym detection have been investigated in distributional semantics. Here we present a new approach based on a smoothed version of the distributional inclusion hypothesis. The new method is able to improve hypernym detection after testing on the BLESS dataset.

Guardado en:
Detalles Bibliográficos
Autores principales: Ludovica Pannitto, Lavinia Salicchi, Alessandro Lenci
Formato: article
Lenguaje:EN
Publicado: Accademia University Press 2018
Materias:
H
Acceso en línea:https://doaj.org/article/da6f8ecc065a4a64bb29d283593ac08e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Several unsupervised methods for hypernym detection have been investigated in distributional semantics. Here we present a new approach based on a smoothed version of the distributional inclusion hypothesis. The new method is able to improve hypernym detection after testing on the BLESS dataset.