Refining the Distributional Inclusion Hypothesis for Unsupervised Hypernym Identification
Several unsupervised methods for hypernym detection have been investigated in distributional semantics. Here we present a new approach based on a smoothed version of the distributional inclusion hypothesis. The new method is able to improve hypernym detection after testing on the BLESS dataset.
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Accademia University Press
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/da6f8ecc065a4a64bb29d283593ac08e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Several unsupervised methods for hypernym detection have been investigated in distributional semantics. Here we present a new approach based on a smoothed version of the distributional inclusion hypothesis. The new method is able to improve hypernym detection after testing on the BLESS dataset. |
---|