Dynamically prognosticating patients with hepatocellular carcinoma through survival paths mapping based on time-series data

Patients with hepatocellular carcinoma require regular follow-up. Here, using Cox-based feature selection to identify key prognostic features, the authors convert time-series follow-up data into a cascading survival map, and show that the approach improves dynamic prognosis prediction for patients.

Guardado en:
Detalles Bibliográficos
Autores principales: Lujun Shen, Qi Zeng, Pi Guo, Jingjun Huang, Chaofeng Li, Tao Pan, Boyang Chang, Nan Wu, Lewei Yang, Qifeng Chen, Tao Huang, Wang Li, Peihong Wu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/da859ea395f4437b8d38707d5828dc84
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:da859ea395f4437b8d38707d5828dc84
record_format dspace
spelling oai:doaj.org-article:da859ea395f4437b8d38707d5828dc842021-12-02T16:49:35ZDynamically prognosticating patients with hepatocellular carcinoma through survival paths mapping based on time-series data10.1038/s41467-018-04633-72041-1723https://doaj.org/article/da859ea395f4437b8d38707d5828dc842018-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-04633-7https://doaj.org/toc/2041-1723Patients with hepatocellular carcinoma require regular follow-up. Here, using Cox-based feature selection to identify key prognostic features, the authors convert time-series follow-up data into a cascading survival map, and show that the approach improves dynamic prognosis prediction for patients.Lujun ShenQi ZengPi GuoJingjun HuangChaofeng LiTao PanBoyang ChangNan WuLewei YangQifeng ChenTao HuangWang LiPeihong WuNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-10 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Lujun Shen
Qi Zeng
Pi Guo
Jingjun Huang
Chaofeng Li
Tao Pan
Boyang Chang
Nan Wu
Lewei Yang
Qifeng Chen
Tao Huang
Wang Li
Peihong Wu
Dynamically prognosticating patients with hepatocellular carcinoma through survival paths mapping based on time-series data
description Patients with hepatocellular carcinoma require regular follow-up. Here, using Cox-based feature selection to identify key prognostic features, the authors convert time-series follow-up data into a cascading survival map, and show that the approach improves dynamic prognosis prediction for patients.
format article
author Lujun Shen
Qi Zeng
Pi Guo
Jingjun Huang
Chaofeng Li
Tao Pan
Boyang Chang
Nan Wu
Lewei Yang
Qifeng Chen
Tao Huang
Wang Li
Peihong Wu
author_facet Lujun Shen
Qi Zeng
Pi Guo
Jingjun Huang
Chaofeng Li
Tao Pan
Boyang Chang
Nan Wu
Lewei Yang
Qifeng Chen
Tao Huang
Wang Li
Peihong Wu
author_sort Lujun Shen
title Dynamically prognosticating patients with hepatocellular carcinoma through survival paths mapping based on time-series data
title_short Dynamically prognosticating patients with hepatocellular carcinoma through survival paths mapping based on time-series data
title_full Dynamically prognosticating patients with hepatocellular carcinoma through survival paths mapping based on time-series data
title_fullStr Dynamically prognosticating patients with hepatocellular carcinoma through survival paths mapping based on time-series data
title_full_unstemmed Dynamically prognosticating patients with hepatocellular carcinoma through survival paths mapping based on time-series data
title_sort dynamically prognosticating patients with hepatocellular carcinoma through survival paths mapping based on time-series data
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/da859ea395f4437b8d38707d5828dc84
work_keys_str_mv AT lujunshen dynamicallyprognosticatingpatientswithhepatocellularcarcinomathroughsurvivalpathsmappingbasedontimeseriesdata
AT qizeng dynamicallyprognosticatingpatientswithhepatocellularcarcinomathroughsurvivalpathsmappingbasedontimeseriesdata
AT piguo dynamicallyprognosticatingpatientswithhepatocellularcarcinomathroughsurvivalpathsmappingbasedontimeseriesdata
AT jingjunhuang dynamicallyprognosticatingpatientswithhepatocellularcarcinomathroughsurvivalpathsmappingbasedontimeseriesdata
AT chaofengli dynamicallyprognosticatingpatientswithhepatocellularcarcinomathroughsurvivalpathsmappingbasedontimeseriesdata
AT taopan dynamicallyprognosticatingpatientswithhepatocellularcarcinomathroughsurvivalpathsmappingbasedontimeseriesdata
AT boyangchang dynamicallyprognosticatingpatientswithhepatocellularcarcinomathroughsurvivalpathsmappingbasedontimeseriesdata
AT nanwu dynamicallyprognosticatingpatientswithhepatocellularcarcinomathroughsurvivalpathsmappingbasedontimeseriesdata
AT leweiyang dynamicallyprognosticatingpatientswithhepatocellularcarcinomathroughsurvivalpathsmappingbasedontimeseriesdata
AT qifengchen dynamicallyprognosticatingpatientswithhepatocellularcarcinomathroughsurvivalpathsmappingbasedontimeseriesdata
AT taohuang dynamicallyprognosticatingpatientswithhepatocellularcarcinomathroughsurvivalpathsmappingbasedontimeseriesdata
AT wangli dynamicallyprognosticatingpatientswithhepatocellularcarcinomathroughsurvivalpathsmappingbasedontimeseriesdata
AT peihongwu dynamicallyprognosticatingpatientswithhepatocellularcarcinomathroughsurvivalpathsmappingbasedontimeseriesdata
_version_ 1718383306473472000