Dynamically prognosticating patients with hepatocellular carcinoma through survival paths mapping based on time-series data
Patients with hepatocellular carcinoma require regular follow-up. Here, using Cox-based feature selection to identify key prognostic features, the authors convert time-series follow-up data into a cascading survival map, and show that the approach improves dynamic prognosis prediction for patients.
Guardado en:
Autores principales: | Lujun Shen, Qi Zeng, Pi Guo, Jingjun Huang, Chaofeng Li, Tao Pan, Boyang Chang, Nan Wu, Lewei Yang, Qifeng Chen, Tao Huang, Wang Li, Peihong Wu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/da859ea395f4437b8d38707d5828dc84 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
ABO blood type correlates with survival in hepatocellular carcinoma following hepatectomy
por: Tao Wu, et al.
Publicado: (2017) -
Construction and validation of a nomogram for predicting cancer-specific survival in hepatocellular carcinoma patients
por: Kang Liu, et al.
Publicado: (2020) -
A Novel Pyroptosis-related Prognostic Model for Hepatocellular Carcinoma
por: Qianqian Wu, et al.
Publicado: (2021) -
Exploring the Prognostic Value, Immune Implication and Biological Function of H2AFY Gene in Hepatocellular Carcinoma
por: Yongbiao Huang, et al.
Publicado: (2021) -
Development and Validation of a Three-gene Prognostic Signature for Patients with Hepatocellular Carcinoma
por: Binghua Li, et al.
Publicado: (2017)