Lagrangian geometry of the Gauss images of isoparametric hypersurfaces in spheres
The Gauss images of isoparametric hypersufaces of the standard sphere Sn+1 provide a rich class of compact minimal Lagrangian submanifolds embedded in the complex hyperquadric Qn(ℂ). This is a survey article based on our joint work [17] to study the Hamiltonian non-displaceability and related proper...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/daa5b67a840d4a95b56cedca9b82447d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:daa5b67a840d4a95b56cedca9b82447d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:daa5b67a840d4a95b56cedca9b82447d2021-12-02T19:07:54ZLagrangian geometry of the Gauss images of isoparametric hypersurfaces in spheres2300-744310.1515/coma-2019-0013https://doaj.org/article/daa5b67a840d4a95b56cedca9b82447d2019-01-01T00:00:00Zhttps://doi.org/10.1515/coma-2019-0013https://doaj.org/toc/2300-7443The Gauss images of isoparametric hypersufaces of the standard sphere Sn+1 provide a rich class of compact minimal Lagrangian submanifolds embedded in the complex hyperquadric Qn(ℂ). This is a survey article based on our joint work [17] to study the Hamiltonian non-displaceability and related properties of such Lagrangian submanifolds.Miyaoka ReikoOhnita YoshihiroDe Gruyterarticleisoparametric hypersurfacesmonotone lagrangian submanifoldsfloer homologyprimary: 53c40secondary: 53c42, 53d12MathematicsQA1-939ENComplex Manifolds, Vol 6, Iss 1, Pp 265-278 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
isoparametric hypersurfaces monotone lagrangian submanifolds floer homology primary: 53c40 secondary: 53c42, 53d12 Mathematics QA1-939 |
spellingShingle |
isoparametric hypersurfaces monotone lagrangian submanifolds floer homology primary: 53c40 secondary: 53c42, 53d12 Mathematics QA1-939 Miyaoka Reiko Ohnita Yoshihiro Lagrangian geometry of the Gauss images of isoparametric hypersurfaces in spheres |
description |
The Gauss images of isoparametric hypersufaces of the standard sphere Sn+1 provide a rich class of compact minimal Lagrangian submanifolds embedded in the complex hyperquadric Qn(ℂ). This is a survey article based on our joint work [17] to study the Hamiltonian non-displaceability and related properties of such Lagrangian submanifolds. |
format |
article |
author |
Miyaoka Reiko Ohnita Yoshihiro |
author_facet |
Miyaoka Reiko Ohnita Yoshihiro |
author_sort |
Miyaoka Reiko |
title |
Lagrangian geometry of the Gauss images of isoparametric hypersurfaces in spheres |
title_short |
Lagrangian geometry of the Gauss images of isoparametric hypersurfaces in spheres |
title_full |
Lagrangian geometry of the Gauss images of isoparametric hypersurfaces in spheres |
title_fullStr |
Lagrangian geometry of the Gauss images of isoparametric hypersurfaces in spheres |
title_full_unstemmed |
Lagrangian geometry of the Gauss images of isoparametric hypersurfaces in spheres |
title_sort |
lagrangian geometry of the gauss images of isoparametric hypersurfaces in spheres |
publisher |
De Gruyter |
publishDate |
2019 |
url |
https://doaj.org/article/daa5b67a840d4a95b56cedca9b82447d |
work_keys_str_mv |
AT miyaokareiko lagrangiangeometryofthegaussimagesofisoparametrichypersurfacesinspheres AT ohnitayoshihiro lagrangiangeometryofthegaussimagesofisoparametrichypersurfacesinspheres |
_version_ |
1718377179531706368 |