Lagrangian geometry of the Gauss images of isoparametric hypersurfaces in spheres
The Gauss images of isoparametric hypersufaces of the standard sphere Sn+1 provide a rich class of compact minimal Lagrangian submanifolds embedded in the complex hyperquadric Qn(ℂ). This is a survey article based on our joint work [17] to study the Hamiltonian non-displaceability and related proper...
Guardado en:
Autores principales: | Miyaoka Reiko, Ohnita Yoshihiro |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/daa5b67a840d4a95b56cedca9b82447d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Minimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces
por: Ohnita Yoshihiro
Publicado: (2019) -
G2-metrics arising from non-integrable special Lagrangian fibrations
por: Chihara Ryohei
Publicado: (2019) -
Parallelizations on products of spheres and octonionic geometry
por: Parton Maurizio, et al.
Publicado: (2019) -
Deformation classes in generalized Kähler geometry
por: Gibson Matthew, et al.
Publicado: (2020) -
Contact manifolds, Lagrangian Grassmannians and PDEs
por: Eshkobilov Olimjon, et al.
Publicado: (2018)