Lagrangian geometry of the Gauss images of isoparametric hypersurfaces in spheres
The Gauss images of isoparametric hypersufaces of the standard sphere Sn+1 provide a rich class of compact minimal Lagrangian submanifolds embedded in the complex hyperquadric Qn(ℂ). This is a survey article based on our joint work [17] to study the Hamiltonian non-displaceability and related proper...
Enregistré dans:
Auteurs principaux: | Miyaoka Reiko, Ohnita Yoshihiro |
---|---|
Format: | article |
Langue: | EN |
Publié: |
De Gruyter
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/daa5b67a840d4a95b56cedca9b82447d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Minimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces
par: Ohnita Yoshihiro
Publié: (2019) -
G2-metrics arising from non-integrable special Lagrangian fibrations
par: Chihara Ryohei
Publié: (2019) -
Parallelizations on products of spheres and octonionic geometry
par: Parton Maurizio, et autres
Publié: (2019) -
Deformation classes in generalized Kähler geometry
par: Gibson Matthew, et autres
Publié: (2020) -
Contact manifolds, Lagrangian Grassmannians and PDEs
par: Eshkobilov Olimjon, et autres
Publié: (2018)