Graph-Based Logarithmic Low-Rank Tensor Decomposition for the Fusion of Remotely Sensed Images
Hyperspectral images with high spatial resolution play an important role in material classification, change detection, and others. However, owing to the limitation of imaging sensors, it is difficult to directly acquire images with both high spatial resolution and high spectral resolution. Therefore...
Enregistré dans:
Auteurs principaux: | Fei Ma, Shuai Huo, Feixia Yang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/daacdba225764451b380e0f01ca8cb1c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Patch-Free Bilateral Network for Hyperspectral Image Classification Using Limited Samples
par: Bing Liu, et autres
Publié: (2021) -
LiteSCANet: An Efficient Lightweight Network Based on Spectral and Channel-Wise Attention for Hyperspectral Image Classification
par: Su Qiao, et autres
Publié: (2021) -
Hyperspectral Image Classification Based on Multilevel Joint Feature Extraction Network
par: Xiaochen Lu, et autres
Publié: (2021) -
A Hybrid Capsule Network for Hyperspectral Image Classification
par: Massoud Khodadadzadeh, et autres
Publié: (2021) -
Change Detection in Hyperdimensional Images Using Untrained Models
par: Sudipan Saha, et autres
Publié: (2021)