Graph-Based Logarithmic Low-Rank Tensor Decomposition for the Fusion of Remotely Sensed Images
Hyperspectral images with high spatial resolution play an important role in material classification, change detection, and others. However, owing to the limitation of imaging sensors, it is difficult to directly acquire images with both high spatial resolution and high spectral resolution. Therefore...
Guardado en:
Autores principales: | Fei Ma, Shuai Huo, Feixia Yang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/daacdba225764451b380e0f01ca8cb1c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Patch-Free Bilateral Network for Hyperspectral Image Classification Using Limited Samples
por: Bing Liu, et al.
Publicado: (2021) -
LiteSCANet: An Efficient Lightweight Network Based on Spectral and Channel-Wise Attention for Hyperspectral Image Classification
por: Su Qiao, et al.
Publicado: (2021) -
Hyperspectral Image Classification Based on Multilevel Joint Feature Extraction Network
por: Xiaochen Lu, et al.
Publicado: (2021) -
A Hybrid Capsule Network for Hyperspectral Image Classification
por: Massoud Khodadadzadeh, et al.
Publicado: (2021) -
Change Detection in Hyperdimensional Images Using Untrained Models
por: Sudipan Saha, et al.
Publicado: (2021)