Fully automatic liver segmentation combining multi-dimensional graph cut with shape information in 3D CT images
Abstract Liver segmentation is an essential procedure in computer-assisted surgery, radiotherapy, and volume measurement. It is still a challenging task to extract liver tissue from 3D CT images owing to nearby organs with similar intensities. In this paper, an automatic approach integrating multi-d...
Guardado en:
Autores principales: | Xuesong Lu, Qinlan Xie, Yunfei Zha, Defeng Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dab462a1c5404c81a853b6e1c93605f0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Fully automatic wound segmentation with deep convolutional neural networks
por: Chuanbo Wang, et al.
Publicado: (2020) -
Validation of UAV-based alfalfa biomass predictability using photogrammetry with fully automatic plot segmentation
por: Zhou Tang, et al.
Publicado: (2021) -
Fully automated preoperative segmentation of temporal bone structures from clinical CT scans
por: C. A. Neves, et al.
Publicado: (2021) -
Fully automated segmentation in temporal bone CT with neural network: a preliminary assessment study
por: Jiang Wang, et al.
Publicado: (2021) -
A deep learning method for automatic segmentation of the bony orbit in MRI and CT images
por: Jared Hamwood, et al.
Publicado: (2021)