Mechanically reconfigurable multi-functional meta-optics studied at microwave frequencies
Abstract Metasurfaces advanced the field of optics by reducing the thickness of optical components and merging multiple functionalities into a single layer device. However, this generally comes with a reduction in performance, especially for multi-functional and broadband applications. Three-dimensi...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dac517fab0e342e5ababaa84ed05b961 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:dac517fab0e342e5ababaa84ed05b961 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:dac517fab0e342e5ababaa84ed05b9612021-12-02T15:00:20ZMechanically reconfigurable multi-functional meta-optics studied at microwave frequencies10.1038/s41598-021-88785-52045-2322https://doaj.org/article/dac517fab0e342e5ababaa84ed05b9612021-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-88785-5https://doaj.org/toc/2045-2322Abstract Metasurfaces advanced the field of optics by reducing the thickness of optical components and merging multiple functionalities into a single layer device. However, this generally comes with a reduction in performance, especially for multi-functional and broadband applications. Three-dimensional metastructures can provide the necessary degrees of freedom for advanced applications, while maintaining minimal thickness. This work explores mechanically reconfigurable devices that perform focusing, spectral demultiplexing, and polarization sorting based on mechanical configuration. As proof of concept, a rotatable device, a device based on rotating squares, and a shearing-based device are designed with adjoint-based topology optimization, 3D-printed, and measured at microwave frequencies (7.6–11.6 GHz) in an anechoic chamber.Conner BallewGregory RobertsSarah Camayd-MuñozMaximilien F. DebbasAndrei FaraonNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Conner Ballew Gregory Roberts Sarah Camayd-Muñoz Maximilien F. Debbas Andrei Faraon Mechanically reconfigurable multi-functional meta-optics studied at microwave frequencies |
description |
Abstract Metasurfaces advanced the field of optics by reducing the thickness of optical components and merging multiple functionalities into a single layer device. However, this generally comes with a reduction in performance, especially for multi-functional and broadband applications. Three-dimensional metastructures can provide the necessary degrees of freedom for advanced applications, while maintaining minimal thickness. This work explores mechanically reconfigurable devices that perform focusing, spectral demultiplexing, and polarization sorting based on mechanical configuration. As proof of concept, a rotatable device, a device based on rotating squares, and a shearing-based device are designed with adjoint-based topology optimization, 3D-printed, and measured at microwave frequencies (7.6–11.6 GHz) in an anechoic chamber. |
format |
article |
author |
Conner Ballew Gregory Roberts Sarah Camayd-Muñoz Maximilien F. Debbas Andrei Faraon |
author_facet |
Conner Ballew Gregory Roberts Sarah Camayd-Muñoz Maximilien F. Debbas Andrei Faraon |
author_sort |
Conner Ballew |
title |
Mechanically reconfigurable multi-functional meta-optics studied at microwave frequencies |
title_short |
Mechanically reconfigurable multi-functional meta-optics studied at microwave frequencies |
title_full |
Mechanically reconfigurable multi-functional meta-optics studied at microwave frequencies |
title_fullStr |
Mechanically reconfigurable multi-functional meta-optics studied at microwave frequencies |
title_full_unstemmed |
Mechanically reconfigurable multi-functional meta-optics studied at microwave frequencies |
title_sort |
mechanically reconfigurable multi-functional meta-optics studied at microwave frequencies |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/dac517fab0e342e5ababaa84ed05b961 |
work_keys_str_mv |
AT connerballew mechanicallyreconfigurablemultifunctionalmetaopticsstudiedatmicrowavefrequencies AT gregoryroberts mechanicallyreconfigurablemultifunctionalmetaopticsstudiedatmicrowavefrequencies AT sarahcamaydmunoz mechanicallyreconfigurablemultifunctionalmetaopticsstudiedatmicrowavefrequencies AT maximilienfdebbas mechanicallyreconfigurablemultifunctionalmetaopticsstudiedatmicrowavefrequencies AT andreifaraon mechanicallyreconfigurablemultifunctionalmetaopticsstudiedatmicrowavefrequencies |
_version_ |
1718389168655040512 |