Improved prediction of smoking status via isoform-aware RNA-seq deep learning models.
Most predictive models based on gene expression data do not leverage information related to gene splicing, despite the fact that splicing is a fundamental feature of eukaryotic gene expression. Cigarette smoking is an important environmental risk factor for many diseases, and it has profound effects...
Guardado en:
Autores principales: | Zifeng Wang, Aria Masoomi, Zhonghui Xu, Adel Boueiz, Sool Lee, Tingting Zhao, Russell Bowler, Michael Cho, Edwin K Silverman, Craig Hersh, Jennifer Dy, Peter J Castaldi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dad7f97d944747acba04531e3bfd1c45 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
ORF Capture-Seq as a versatile method for targeted identification of full-length isoforms
por: Gloria M. Sheynkman, et al.
Publicado: (2020) -
Systematically differentiating functions for alternatively spliced isoforms through integrating RNA-seq data.
por: Ridvan Eksi, et al.
Publicado: (2013) -
Peripheral blood microbial signatures in current and former smokers
por: Jarrett D. Morrow, et al.
Publicado: (2021) -
Long read, isoform aware sequencing of mouse nucleus accumbens after chronic cocaine treatment
por: Molly Estill, et al.
Publicado: (2021) -
Awareness of health effects of exposure to secondhand smoke from cigarettes: A cross-sectional study of never-smoked adult primary care patients in Eastern Nigeria
por: Gabriel Uche Pascal Iloh, et al.
Publicado: (2017)