Deep Learning Method to Accelerate Discovery of Hybrid Polymer-Graphene Composites
Abstract Interfacial encoded properties of polymer adlayers adsorbed on the graphene (GE) and silicon dioxide (SiO2) have been constituted a scaffold for the creation of new materials. The holistic understanding of nanoscale intermolecular interaction of 1D/2D polymer assemblies on substrate is the...
Guardado en:
Autores principales: | Farzaneh Shayeganfar, Rouzbeh Shahsavari |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dad9747d41ba4f3296187aab16b4af43 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning
por: Shuaihua Lu, et al.
Publicado: (2018) -
Diffusive, Displacive Deformations and Local Phase Transformation Govern the Mechanics of Layered Crystals: The Case Study of Tobermorite
por: Lei Tao, et al.
Publicado: (2017) -
Fabrication and Mechanical Performance of Graphene Nanoplatelet/Glass Fiber Reinforced Polymer Hybrid Composites
por: Xudan Yao, et al.
Publicado: (2021) -
Deep learning can accelerate and quantify simulated localized correlated spectroscopy
por: Zohaib Iqbal, et al.
Publicado: (2021) -
Hybridizing Feature Selection and Feature Learning Approaches in QSAR Modeling for Drug Discovery
por: Ignacio Ponzoni, et al.
Publicado: (2017)