The Magnetic and Crystal Structure of MnxGa (1.15 ≤ x ≤ 1.8) Alloys
Abstract Neutron powder diffraction patterns measured above T C have been used to determine the location of the excess Mn in MnxGa (1.15 ≤ x ≤ 1.8). This information has then been used to constrain the fits to neutron powder diffraction patterns measured at ambient temperature and so determine unamb...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dada72334f424eadade1c1d8e512a994 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:dada72334f424eadade1c1d8e512a994 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:dada72334f424eadade1c1d8e512a9942021-12-02T12:32:04ZThe Magnetic and Crystal Structure of MnxGa (1.15 ≤ x ≤ 1.8) Alloys10.1038/s41598-017-00579-w2045-2322https://doaj.org/article/dada72334f424eadade1c1d8e512a9942017-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-00579-whttps://doaj.org/toc/2045-2322Abstract Neutron powder diffraction patterns measured above T C have been used to determine the location of the excess Mn in MnxGa (1.15 ≤ x ≤ 1.8). This information has then been used to constrain the fits to neutron powder diffraction patterns measured at ambient temperature and so determine unambiguously the Mn moments in this system. We find that Mn randomly occupies the two Ga sites (2a and 2b) in the I4/mmm structure and propose that it is more appropriate to use a simpler structure based on the P4/mmm space group with a reduced unit cell. In this structure the two Ga sites are formally equivalent (they occupy the 1a site while Mn occupies the 1d site). Our experimental observations are supported by DFT calculations. Below T C we find that the Mn(1d) moment is constant at 2.45(3) μ B , while Mn on the 1a site carries a slightly larger moment (~3 μ B ) that is coupled antiparallel to the Mn(1d) moments, leading to the observed drop in magnetisation with increasing Mn content in MnxGa.D. H. RyanMing YueC. B. BoyerX. B. LiuQingmei LuHongguo ZhangChenhui LiManli WangZ. AltounianNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-8 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q D. H. Ryan Ming Yue C. B. Boyer X. B. Liu Qingmei Lu Hongguo Zhang Chenhui Li Manli Wang Z. Altounian The Magnetic and Crystal Structure of MnxGa (1.15 ≤ x ≤ 1.8) Alloys |
description |
Abstract Neutron powder diffraction patterns measured above T C have been used to determine the location of the excess Mn in MnxGa (1.15 ≤ x ≤ 1.8). This information has then been used to constrain the fits to neutron powder diffraction patterns measured at ambient temperature and so determine unambiguously the Mn moments in this system. We find that Mn randomly occupies the two Ga sites (2a and 2b) in the I4/mmm structure and propose that it is more appropriate to use a simpler structure based on the P4/mmm space group with a reduced unit cell. In this structure the two Ga sites are formally equivalent (they occupy the 1a site while Mn occupies the 1d site). Our experimental observations are supported by DFT calculations. Below T C we find that the Mn(1d) moment is constant at 2.45(3) μ B , while Mn on the 1a site carries a slightly larger moment (~3 μ B ) that is coupled antiparallel to the Mn(1d) moments, leading to the observed drop in magnetisation with increasing Mn content in MnxGa. |
format |
article |
author |
D. H. Ryan Ming Yue C. B. Boyer X. B. Liu Qingmei Lu Hongguo Zhang Chenhui Li Manli Wang Z. Altounian |
author_facet |
D. H. Ryan Ming Yue C. B. Boyer X. B. Liu Qingmei Lu Hongguo Zhang Chenhui Li Manli Wang Z. Altounian |
author_sort |
D. H. Ryan |
title |
The Magnetic and Crystal Structure of MnxGa (1.15 ≤ x ≤ 1.8) Alloys |
title_short |
The Magnetic and Crystal Structure of MnxGa (1.15 ≤ x ≤ 1.8) Alloys |
title_full |
The Magnetic and Crystal Structure of MnxGa (1.15 ≤ x ≤ 1.8) Alloys |
title_fullStr |
The Magnetic and Crystal Structure of MnxGa (1.15 ≤ x ≤ 1.8) Alloys |
title_full_unstemmed |
The Magnetic and Crystal Structure of MnxGa (1.15 ≤ x ≤ 1.8) Alloys |
title_sort |
magnetic and crystal structure of mnxga (1.15 ≤ x ≤ 1.8) alloys |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/dada72334f424eadade1c1d8e512a994 |
work_keys_str_mv |
AT dhryan themagneticandcrystalstructureofmnxga115x18alloys AT mingyue themagneticandcrystalstructureofmnxga115x18alloys AT cbboyer themagneticandcrystalstructureofmnxga115x18alloys AT xbliu themagneticandcrystalstructureofmnxga115x18alloys AT qingmeilu themagneticandcrystalstructureofmnxga115x18alloys AT hongguozhang themagneticandcrystalstructureofmnxga115x18alloys AT chenhuili themagneticandcrystalstructureofmnxga115x18alloys AT manliwang themagneticandcrystalstructureofmnxga115x18alloys AT zaltounian themagneticandcrystalstructureofmnxga115x18alloys AT dhryan magneticandcrystalstructureofmnxga115x18alloys AT mingyue magneticandcrystalstructureofmnxga115x18alloys AT cbboyer magneticandcrystalstructureofmnxga115x18alloys AT xbliu magneticandcrystalstructureofmnxga115x18alloys AT qingmeilu magneticandcrystalstructureofmnxga115x18alloys AT hongguozhang magneticandcrystalstructureofmnxga115x18alloys AT chenhuili magneticandcrystalstructureofmnxga115x18alloys AT manliwang magneticandcrystalstructureofmnxga115x18alloys AT zaltounian magneticandcrystalstructureofmnxga115x18alloys |
_version_ |
1718394186238001152 |