Spliceator: multi-species splice site prediction using convolutional neural networks
Abstract Background Ab initio prediction of splice sites is an essential step in eukaryotic genome annotation. Recent predictors have exploited Deep Learning algorithms and reliable gene structures from model organisms. However, Deep Learning methods for non-model organisms are lacking. Results We d...
Guardado en:
Autores principales: | Nicolas Scalzitti, Arnaud Kress, Romain Orhand, Thomas Weber, Luc Moulinier, Anne Jeannin-Girardon, Pierre Collet, Olivier Poch, Julie D. Thompson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dae123c3bbd74e8ba53ff17599644662 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Evolution of the Early Spliceosomal Complex—From Constitutive to Regulated Splicing
por: Sonia Borao, et al.
Publicado: (2021) -
Six splice site variations, three of them novel, in the ABO gene occurring in nine individuals with ABO subtypes
por: Xiaozhen Hong, et al.
Publicado: (2021) -
Comparison of wavelet transformations to enhance convolutional neural network performance in brain tumor segmentation
por: Mohamadreza Hajiabadi, et al.
Publicado: (2021) -
Towards Splicing Therapy for Lysosomal Storage Disorders: Methylxanthines and Luteolin Ameliorate Splicing Defects in Aspartylglucosaminuria and Classic Late Infantile Neuronal Ceroid Lipofuscinosis
por: Antje Banning, et al.
Publicado: (2021) -
Identification of natural selection in genomic data with deep convolutional neural network
por: Arnaud Nguembang Fadja, et al.
Publicado: (2021)