Involvement of N-methylpurine DNA glycosylase in resistance to temozolomide in patient-derived glioma cells
Abstract Chemotherapy for high-grade astrocytic tumors is mainly based on the use of temozolomide (TMZ), whose efficacy is limited by resistance mechanisms. Despite many investigations pointing to O6-methylguanine-DNA-methyltransferase (MGMT) as being responsible for tumor chemo-resistance, its expr...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dae88f83974f4fc9a5df3c7c493518eb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:dae88f83974f4fc9a5df3c7c493518eb |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:dae88f83974f4fc9a5df3c7c493518eb2021-12-02T13:58:11ZInvolvement of N-methylpurine DNA glycosylase in resistance to temozolomide in patient-derived glioma cells10.1038/s41598-020-78868-02045-2322https://doaj.org/article/dae88f83974f4fc9a5df3c7c493518eb2020-12-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-78868-0https://doaj.org/toc/2045-2322Abstract Chemotherapy for high-grade astrocytic tumors is mainly based on the use of temozolomide (TMZ), whose efficacy is limited by resistance mechanisms. Despite many investigations pointing to O6-methylguanine-DNA-methyltransferase (MGMT) as being responsible for tumor chemo-resistance, its expression does not predict an accurate response in most gliomas, suggesting that MGMT is not the only determinant of response to treatment. In this sense, several reports indicate that N-methylpurine-DNA-glycosylase (MPG) may be involved in that resistance. With that in mind, we evaluated for the first time the degree of resistance to TMZ treatment in 18 patient-derived glioma cells and its association with MGMT and MPG mRNA levels. Viability cell assays showed that TMZ treatment hardly caused growth inhibition in the patient-derived cells, even in high concentrations, indicating that all primary cultures were chemo-resistant. mRNA expression analyses showed that the TMZ-resistant phenotype displayed by cells is associated with an elevated expression of MPG to a greater extent than it is with transcript levels of MGMT. Our findings suggest that not only is MGMT implicated in resistance to TMZ but MPG, the first enzyme in base excision repair processing, is also involved, supporting its potential role as a target in anti-resistance chemotherapy for astrocytoma and glioblastoma.Gemma Serrano-HerasBeatriz Castro-RoblesCarlos M. Romero-SánchezBlanca CarriónRosa Barbella-AponteHernán SandovalTomás SeguraNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-10 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Gemma Serrano-Heras Beatriz Castro-Robles Carlos M. Romero-Sánchez Blanca Carrión Rosa Barbella-Aponte Hernán Sandoval Tomás Segura Involvement of N-methylpurine DNA glycosylase in resistance to temozolomide in patient-derived glioma cells |
description |
Abstract Chemotherapy for high-grade astrocytic tumors is mainly based on the use of temozolomide (TMZ), whose efficacy is limited by resistance mechanisms. Despite many investigations pointing to O6-methylguanine-DNA-methyltransferase (MGMT) as being responsible for tumor chemo-resistance, its expression does not predict an accurate response in most gliomas, suggesting that MGMT is not the only determinant of response to treatment. In this sense, several reports indicate that N-methylpurine-DNA-glycosylase (MPG) may be involved in that resistance. With that in mind, we evaluated for the first time the degree of resistance to TMZ treatment in 18 patient-derived glioma cells and its association with MGMT and MPG mRNA levels. Viability cell assays showed that TMZ treatment hardly caused growth inhibition in the patient-derived cells, even in high concentrations, indicating that all primary cultures were chemo-resistant. mRNA expression analyses showed that the TMZ-resistant phenotype displayed by cells is associated with an elevated expression of MPG to a greater extent than it is with transcript levels of MGMT. Our findings suggest that not only is MGMT implicated in resistance to TMZ but MPG, the first enzyme in base excision repair processing, is also involved, supporting its potential role as a target in anti-resistance chemotherapy for astrocytoma and glioblastoma. |
format |
article |
author |
Gemma Serrano-Heras Beatriz Castro-Robles Carlos M. Romero-Sánchez Blanca Carrión Rosa Barbella-Aponte Hernán Sandoval Tomás Segura |
author_facet |
Gemma Serrano-Heras Beatriz Castro-Robles Carlos M. Romero-Sánchez Blanca Carrión Rosa Barbella-Aponte Hernán Sandoval Tomás Segura |
author_sort |
Gemma Serrano-Heras |
title |
Involvement of N-methylpurine DNA glycosylase in resistance to temozolomide in patient-derived glioma cells |
title_short |
Involvement of N-methylpurine DNA glycosylase in resistance to temozolomide in patient-derived glioma cells |
title_full |
Involvement of N-methylpurine DNA glycosylase in resistance to temozolomide in patient-derived glioma cells |
title_fullStr |
Involvement of N-methylpurine DNA glycosylase in resistance to temozolomide in patient-derived glioma cells |
title_full_unstemmed |
Involvement of N-methylpurine DNA glycosylase in resistance to temozolomide in patient-derived glioma cells |
title_sort |
involvement of n-methylpurine dna glycosylase in resistance to temozolomide in patient-derived glioma cells |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/dae88f83974f4fc9a5df3c7c493518eb |
work_keys_str_mv |
AT gemmaserranoheras involvementofnmethylpurinednaglycosylaseinresistancetotemozolomideinpatientderivedgliomacells AT beatrizcastrorobles involvementofnmethylpurinednaglycosylaseinresistancetotemozolomideinpatientderivedgliomacells AT carlosmromerosanchez involvementofnmethylpurinednaglycosylaseinresistancetotemozolomideinpatientderivedgliomacells AT blancacarrion involvementofnmethylpurinednaglycosylaseinresistancetotemozolomideinpatientderivedgliomacells AT rosabarbellaaponte involvementofnmethylpurinednaglycosylaseinresistancetotemozolomideinpatientderivedgliomacells AT hernansandoval involvementofnmethylpurinednaglycosylaseinresistancetotemozolomideinpatientderivedgliomacells AT tomassegura involvementofnmethylpurinednaglycosylaseinresistancetotemozolomideinpatientderivedgliomacells |
_version_ |
1718392231203700736 |