Artificial Neural Network-Based Model for Prediction of Frost Heave Behavior of Silty Soil Specimen
Frost heave action is a major issue in permafrost regions that can give rise to various geotechnical engineering problems. To analyze and predict this phenomenon at a specimen scale, this study conducted a fully coupled thermal-hydro-mechanical analysis and evaluated the frost heave behavior of froz...
Guardado en:
Autores principales: | Seok Yoon, Dinh-Viet Le, Gyu-Hyun Go |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/daf4bff7217d48ecafa573bdcba9914c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A study of the insulating and anti-frost heave effects of polystyrene boards under molded bag concrete conditions
por: Fuqiang Guo, et al.
Publicado: (2021) -
Experimental study on the hydraulic performance of nonwoven geotextile as subsurface drain filter in a silty loam area
por: Mohamed Monir Elzoghby, et al.
Publicado: (2021) -
Crystal structure, thermal and electrotransport properties of NdBa1–xSrxFeCo0.5Cu0.5O5+δ (0.02 ≤ x ≤ 0.20) solid solutions
por: A. I. Klyndyuk, et al.
Publicado: (2021) -
Thermal behavior of water base-fluid in the presence of graphene nanosheets and carbon nanotubes: A molecular dynamics simulation
por: Danhong Li, et al.
Publicado: (2021) -
Friction and Wear Property of Copper Alloys for Plain Bearing
por: Masahito Fujita, et al.
Publicado: (2015)