Seeing and hearing a word: combining eye and ear is more efficient than combining the parts of a word.
To understand why human sensitivity for complex objects is so low, we study how word identification combines eye and ear or parts of a word (features, letters, syllables). Our observers identify printed and spoken words presented concurrently or separately. When researchers measure threshold (energy...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dafaeee4c558445f8d95298e2b828289 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | To understand why human sensitivity for complex objects is so low, we study how word identification combines eye and ear or parts of a word (features, letters, syllables). Our observers identify printed and spoken words presented concurrently or separately. When researchers measure threshold (energy of the faintest visible or audible signal) they may report either sensitivity (one over the human threshold) or efficiency (ratio of the best possible threshold to the human threshold). When the best possible algorithm identifies an object (like a word) in noise, its threshold is independent of how many parts the object has. But, with human observers, efficiency depends on the task. In some tasks, human observers combine parts efficiently, needing hardly more energy to identify an object with more parts. In other tasks, they combine inefficiently, needing energy nearly proportional to the number of parts, over a 60∶1 range. Whether presented to eye or ear, efficiency for detecting a short sinusoid (tone or grating) with few features is a substantial 20%, while efficiency for identifying a word with many features is merely 1%. Why? We show that the low human sensitivity for words is a cost of combining their many parts. We report a dichotomy between inefficient combining of adjacent features and efficient combining across senses. Joining our results with a survey of the cue-combination literature reveals that cues combine efficiently only if they are perceived as aspects of the same object. Observers give different names to adjacent letters in a word, and combine them inefficiently. Observers give the same name to a word's image and sound, and combine them efficiently. The brain's machinery optimally combines only cues that are perceived as originating from the same object. Presumably such cues each find their own way through the brain to arrive at the same object representation. |
---|