Assessment of Dynamic Bayesian Models for Gas Turbine Diagnostics, Part 1: Prior Probability Analysis
The reliability and cost-effectiveness of energy conversion in gas turbine systems are strongly dependent on an accurate diagnosis of possible process and sensor anomalies. Because data collected from a gas turbine system for diagnosis are inherently uncertain due to measurement noise and errors, pr...
Guardado en:
Autores principales: | Valentina Zaccaria, Amare Desalegn Fentaye, Konstantinos Kyprianidis |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/db04f4b5508d4be4ad02e06d2c63308a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Fusion-Learning of Bayesian Network Models for Fault Diagnostics
por: Toyosi Ademujimi, et al.
Publicado: (2021) -
Future Trends in Semiconducting Gas-Selective Sensing Probes for Skin Diagnostics
por: Anthony Annerino, et al.
Publicado: (2021) -
Second law approach in the reduction of gas emission from gas turbine plant
por: M.N. Eke, et al.
Publicado: (2021) -
Emission characteristics of a lean-premixed ammonia/natural-gas gas-turbine combustor and effect of secondary ammonia injection
por: Shintaro ITO, et al.
Publicado: (2019) -
Journal of clinical and diagnostic research JCDR.
Publicado: (2007)