Anaesthesia monitoring by recurrence quantification analysis of EEG data.

Appropriate monitoring of the depth of anaesthesia is crucial to prevent deleterious effects of insufficient anaesthesia on surgical patients. Since cardiovascular parameters and motor response testing may fail to display awareness during surgery, attempts are made to utilise alterations in brain ac...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Klaus Becker, Gerhard Schneider, Matthias Eder, Andreas Ranft, Eberhard F Kochs, Walter Zieglgänsberger, Hans-Ulrich Dodt
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2010
Materias:
R
Q
Acceso en línea:https://doaj.org/article/db22d53ce8554b3f82ee35fccd466b7d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:db22d53ce8554b3f82ee35fccd466b7d
record_format dspace
spelling oai:doaj.org-article:db22d53ce8554b3f82ee35fccd466b7d2021-11-25T06:26:23ZAnaesthesia monitoring by recurrence quantification analysis of EEG data.1932-620310.1371/journal.pone.0008876https://doaj.org/article/db22d53ce8554b3f82ee35fccd466b7d2010-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/20126649/?tool=EBIhttps://doaj.org/toc/1932-6203Appropriate monitoring of the depth of anaesthesia is crucial to prevent deleterious effects of insufficient anaesthesia on surgical patients. Since cardiovascular parameters and motor response testing may fail to display awareness during surgery, attempts are made to utilise alterations in brain activity as reliable markers of the anaesthetic state. Here we present a novel, promising approach for anaesthesia monitoring, basing on recurrence quantification analysis (RQA) of EEG recordings. This nonlinear time series analysis technique separates consciousness from unconsciousness during both remifentanil/sevoflurane and remifentanil/propofol anaesthesia with an overall prediction probability of more than 85%, when applied to spontaneous one-channel EEG activity in surgical patients.Klaus BeckerGerhard SchneiderMatthias EderAndreas RanftEberhard F KochsWalter ZieglgänsbergerHans-Ulrich DodtPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 5, Iss 1, p e8876 (2010)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Klaus Becker
Gerhard Schneider
Matthias Eder
Andreas Ranft
Eberhard F Kochs
Walter Zieglgänsberger
Hans-Ulrich Dodt
Anaesthesia monitoring by recurrence quantification analysis of EEG data.
description Appropriate monitoring of the depth of anaesthesia is crucial to prevent deleterious effects of insufficient anaesthesia on surgical patients. Since cardiovascular parameters and motor response testing may fail to display awareness during surgery, attempts are made to utilise alterations in brain activity as reliable markers of the anaesthetic state. Here we present a novel, promising approach for anaesthesia monitoring, basing on recurrence quantification analysis (RQA) of EEG recordings. This nonlinear time series analysis technique separates consciousness from unconsciousness during both remifentanil/sevoflurane and remifentanil/propofol anaesthesia with an overall prediction probability of more than 85%, when applied to spontaneous one-channel EEG activity in surgical patients.
format article
author Klaus Becker
Gerhard Schneider
Matthias Eder
Andreas Ranft
Eberhard F Kochs
Walter Zieglgänsberger
Hans-Ulrich Dodt
author_facet Klaus Becker
Gerhard Schneider
Matthias Eder
Andreas Ranft
Eberhard F Kochs
Walter Zieglgänsberger
Hans-Ulrich Dodt
author_sort Klaus Becker
title Anaesthesia monitoring by recurrence quantification analysis of EEG data.
title_short Anaesthesia monitoring by recurrence quantification analysis of EEG data.
title_full Anaesthesia monitoring by recurrence quantification analysis of EEG data.
title_fullStr Anaesthesia monitoring by recurrence quantification analysis of EEG data.
title_full_unstemmed Anaesthesia monitoring by recurrence quantification analysis of EEG data.
title_sort anaesthesia monitoring by recurrence quantification analysis of eeg data.
publisher Public Library of Science (PLoS)
publishDate 2010
url https://doaj.org/article/db22d53ce8554b3f82ee35fccd466b7d
work_keys_str_mv AT klausbecker anaesthesiamonitoringbyrecurrencequantificationanalysisofeegdata
AT gerhardschneider anaesthesiamonitoringbyrecurrencequantificationanalysisofeegdata
AT matthiaseder anaesthesiamonitoringbyrecurrencequantificationanalysisofeegdata
AT andreasranft anaesthesiamonitoringbyrecurrencequantificationanalysisofeegdata
AT eberhardfkochs anaesthesiamonitoringbyrecurrencequantificationanalysisofeegdata
AT walterzieglgansberger anaesthesiamonitoringbyrecurrencequantificationanalysisofeegdata
AT hansulrichdodt anaesthesiamonitoringbyrecurrencequantificationanalysisofeegdata
_version_ 1718413773701644288