Anaesthesia monitoring by recurrence quantification analysis of EEG data.
Appropriate monitoring of the depth of anaesthesia is crucial to prevent deleterious effects of insufficient anaesthesia on surgical patients. Since cardiovascular parameters and motor response testing may fail to display awareness during surgery, attempts are made to utilise alterations in brain ac...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2010
|
Materias: | |
Acceso en línea: | https://doaj.org/article/db22d53ce8554b3f82ee35fccd466b7d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:db22d53ce8554b3f82ee35fccd466b7d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:db22d53ce8554b3f82ee35fccd466b7d2021-11-25T06:26:23ZAnaesthesia monitoring by recurrence quantification analysis of EEG data.1932-620310.1371/journal.pone.0008876https://doaj.org/article/db22d53ce8554b3f82ee35fccd466b7d2010-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/20126649/?tool=EBIhttps://doaj.org/toc/1932-6203Appropriate monitoring of the depth of anaesthesia is crucial to prevent deleterious effects of insufficient anaesthesia on surgical patients. Since cardiovascular parameters and motor response testing may fail to display awareness during surgery, attempts are made to utilise alterations in brain activity as reliable markers of the anaesthetic state. Here we present a novel, promising approach for anaesthesia monitoring, basing on recurrence quantification analysis (RQA) of EEG recordings. This nonlinear time series analysis technique separates consciousness from unconsciousness during both remifentanil/sevoflurane and remifentanil/propofol anaesthesia with an overall prediction probability of more than 85%, when applied to spontaneous one-channel EEG activity in surgical patients.Klaus BeckerGerhard SchneiderMatthias EderAndreas RanftEberhard F KochsWalter ZieglgänsbergerHans-Ulrich DodtPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 5, Iss 1, p e8876 (2010) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Klaus Becker Gerhard Schneider Matthias Eder Andreas Ranft Eberhard F Kochs Walter Zieglgänsberger Hans-Ulrich Dodt Anaesthesia monitoring by recurrence quantification analysis of EEG data. |
description |
Appropriate monitoring of the depth of anaesthesia is crucial to prevent deleterious effects of insufficient anaesthesia on surgical patients. Since cardiovascular parameters and motor response testing may fail to display awareness during surgery, attempts are made to utilise alterations in brain activity as reliable markers of the anaesthetic state. Here we present a novel, promising approach for anaesthesia monitoring, basing on recurrence quantification analysis (RQA) of EEG recordings. This nonlinear time series analysis technique separates consciousness from unconsciousness during both remifentanil/sevoflurane and remifentanil/propofol anaesthesia with an overall prediction probability of more than 85%, when applied to spontaneous one-channel EEG activity in surgical patients. |
format |
article |
author |
Klaus Becker Gerhard Schneider Matthias Eder Andreas Ranft Eberhard F Kochs Walter Zieglgänsberger Hans-Ulrich Dodt |
author_facet |
Klaus Becker Gerhard Schneider Matthias Eder Andreas Ranft Eberhard F Kochs Walter Zieglgänsberger Hans-Ulrich Dodt |
author_sort |
Klaus Becker |
title |
Anaesthesia monitoring by recurrence quantification analysis of EEG data. |
title_short |
Anaesthesia monitoring by recurrence quantification analysis of EEG data. |
title_full |
Anaesthesia monitoring by recurrence quantification analysis of EEG data. |
title_fullStr |
Anaesthesia monitoring by recurrence quantification analysis of EEG data. |
title_full_unstemmed |
Anaesthesia monitoring by recurrence quantification analysis of EEG data. |
title_sort |
anaesthesia monitoring by recurrence quantification analysis of eeg data. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2010 |
url |
https://doaj.org/article/db22d53ce8554b3f82ee35fccd466b7d |
work_keys_str_mv |
AT klausbecker anaesthesiamonitoringbyrecurrencequantificationanalysisofeegdata AT gerhardschneider anaesthesiamonitoringbyrecurrencequantificationanalysisofeegdata AT matthiaseder anaesthesiamonitoringbyrecurrencequantificationanalysisofeegdata AT andreasranft anaesthesiamonitoringbyrecurrencequantificationanalysisofeegdata AT eberhardfkochs anaesthesiamonitoringbyrecurrencequantificationanalysisofeegdata AT walterzieglgansberger anaesthesiamonitoringbyrecurrencequantificationanalysisofeegdata AT hansulrichdodt anaesthesiamonitoringbyrecurrencequantificationanalysisofeegdata |
_version_ |
1718413773701644288 |