The Origin, Succession, and Predicted Metabolism of Bacterial Communities Associated with Leaf Decomposition

ABSTRACT Intraspecific variation in plant nutrient and defensive traits can regulate ecosystem-level processes, such as decomposition and transformation of plant carbon and nutrients. Understanding the regulatory mechanisms of ecosystem functions at local scales may facilitate predictions of the res...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sara L. Jackrel, Jack A. Gilbert, J. Timothy Wootton
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2019
Materias:
Acceso en línea:https://doaj.org/article/db24b982774a4e96808582e679efe788
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:db24b982774a4e96808582e679efe788
record_format dspace
spelling oai:doaj.org-article:db24b982774a4e96808582e679efe7882021-11-15T15:59:41ZThe Origin, Succession, and Predicted Metabolism of Bacterial Communities Associated with Leaf Decomposition10.1128/mBio.01703-192150-7511https://doaj.org/article/db24b982774a4e96808582e679efe7882019-10-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.01703-19https://doaj.org/toc/2150-7511ABSTRACT Intraspecific variation in plant nutrient and defensive traits can regulate ecosystem-level processes, such as decomposition and transformation of plant carbon and nutrients. Understanding the regulatory mechanisms of ecosystem functions at local scales may facilitate predictions of the resistance and resilience of these functions to change. We evaluated how riverine bacterial community assembly and predicted gene content corresponded to decomposition rates of green leaf inputs from red alder trees into rivers of Washington State, USA. Previously, we documented accelerated decomposition rates for leaves originating from trees growing adjacent to the site of decomposition versus more distant locales, suggesting that microbes have a “home-field advantage” in decomposing local leaves. Here, we identified repeatable stages of bacterial succession, each defined by dominant taxa with predicted gene content associated with metabolic pathways relevant to the leaf characteristics and course of decomposition. “Home” leaves contained bacterial communities with distinct functional capacities to degrade aromatic compounds. Given known spatial variation of alder aromatics, this finding helps explain locally accelerated decomposition. Bacterial decomposer communities adjust to intraspecific variation in leaves at spatial scales of less than a kilometer, providing a mechanism for rapid response to changes in resources such as range shifts among plant genotypes. Such rapid responses among bacterial communities in turn may maintain high rates of carbon and nutrient cycling through aquatic ecosystems. IMPORTANCE Community ecologists have traditionally treated individuals within a species as uniform, with individual-level biodiversity rarely considered as a regulator of community and ecosystem function. In our study system, we have documented clear evidence of within-species variation causing local ecosystem adaptation to fluxes across ecosystem boundaries. In this striking pattern of a “home-field advantage,” leaves from individual trees tend to decompose most rapidly when immediately adjacent to their parent tree. Here, we merge community ecology experiments with microbiome approaches to describe how bacterial communities adjust to within-species variation in leaves over spatial scales of less than a kilometer. The results show that bacterial community compositional changes facilitate rapid ecosystem responses to environmental change, effectively maintaining high rates of carbon and nutrient cycling through ecosystems.Sara L. JackrelJack A. GilbertJ. Timothy WoottonAmerican Society for Microbiologyarticlebacterial metabolismaquatic decompositionecosystem subsidiesintraspecific variationenvironmental filteringplant defensive chemistryMicrobiologyQR1-502ENmBio, Vol 10, Iss 5 (2019)
institution DOAJ
collection DOAJ
language EN
topic bacterial metabolism
aquatic decomposition
ecosystem subsidies
intraspecific variation
environmental filtering
plant defensive chemistry
Microbiology
QR1-502
spellingShingle bacterial metabolism
aquatic decomposition
ecosystem subsidies
intraspecific variation
environmental filtering
plant defensive chemistry
Microbiology
QR1-502
Sara L. Jackrel
Jack A. Gilbert
J. Timothy Wootton
The Origin, Succession, and Predicted Metabolism of Bacterial Communities Associated with Leaf Decomposition
description ABSTRACT Intraspecific variation in plant nutrient and defensive traits can regulate ecosystem-level processes, such as decomposition and transformation of plant carbon and nutrients. Understanding the regulatory mechanisms of ecosystem functions at local scales may facilitate predictions of the resistance and resilience of these functions to change. We evaluated how riverine bacterial community assembly and predicted gene content corresponded to decomposition rates of green leaf inputs from red alder trees into rivers of Washington State, USA. Previously, we documented accelerated decomposition rates for leaves originating from trees growing adjacent to the site of decomposition versus more distant locales, suggesting that microbes have a “home-field advantage” in decomposing local leaves. Here, we identified repeatable stages of bacterial succession, each defined by dominant taxa with predicted gene content associated with metabolic pathways relevant to the leaf characteristics and course of decomposition. “Home” leaves contained bacterial communities with distinct functional capacities to degrade aromatic compounds. Given known spatial variation of alder aromatics, this finding helps explain locally accelerated decomposition. Bacterial decomposer communities adjust to intraspecific variation in leaves at spatial scales of less than a kilometer, providing a mechanism for rapid response to changes in resources such as range shifts among plant genotypes. Such rapid responses among bacterial communities in turn may maintain high rates of carbon and nutrient cycling through aquatic ecosystems. IMPORTANCE Community ecologists have traditionally treated individuals within a species as uniform, with individual-level biodiversity rarely considered as a regulator of community and ecosystem function. In our study system, we have documented clear evidence of within-species variation causing local ecosystem adaptation to fluxes across ecosystem boundaries. In this striking pattern of a “home-field advantage,” leaves from individual trees tend to decompose most rapidly when immediately adjacent to their parent tree. Here, we merge community ecology experiments with microbiome approaches to describe how bacterial communities adjust to within-species variation in leaves over spatial scales of less than a kilometer. The results show that bacterial community compositional changes facilitate rapid ecosystem responses to environmental change, effectively maintaining high rates of carbon and nutrient cycling through ecosystems.
format article
author Sara L. Jackrel
Jack A. Gilbert
J. Timothy Wootton
author_facet Sara L. Jackrel
Jack A. Gilbert
J. Timothy Wootton
author_sort Sara L. Jackrel
title The Origin, Succession, and Predicted Metabolism of Bacterial Communities Associated with Leaf Decomposition
title_short The Origin, Succession, and Predicted Metabolism of Bacterial Communities Associated with Leaf Decomposition
title_full The Origin, Succession, and Predicted Metabolism of Bacterial Communities Associated with Leaf Decomposition
title_fullStr The Origin, Succession, and Predicted Metabolism of Bacterial Communities Associated with Leaf Decomposition
title_full_unstemmed The Origin, Succession, and Predicted Metabolism of Bacterial Communities Associated with Leaf Decomposition
title_sort origin, succession, and predicted metabolism of bacterial communities associated with leaf decomposition
publisher American Society for Microbiology
publishDate 2019
url https://doaj.org/article/db24b982774a4e96808582e679efe788
work_keys_str_mv AT saraljackrel theoriginsuccessionandpredictedmetabolismofbacterialcommunitiesassociatedwithleafdecomposition
AT jackagilbert theoriginsuccessionandpredictedmetabolismofbacterialcommunitiesassociatedwithleafdecomposition
AT jtimothywootton theoriginsuccessionandpredictedmetabolismofbacterialcommunitiesassociatedwithleafdecomposition
AT saraljackrel originsuccessionandpredictedmetabolismofbacterialcommunitiesassociatedwithleafdecomposition
AT jackagilbert originsuccessionandpredictedmetabolismofbacterialcommunitiesassociatedwithleafdecomposition
AT jtimothywootton originsuccessionandpredictedmetabolismofbacterialcommunitiesassociatedwithleafdecomposition
_version_ 1718426999419043840