Thermal Analysis of Metal-Organic Precursors for Functional Cu:ΝiOx Hole Transporting Layer in Inverted Perovskite Solar Cells: Role of Solution Combustion Chemistry in Cu:ΝiOx Thin Films Processing

Low temperature solution combustion synthesis emerges as a facile method for the synthesis of functional metal oxides thin films for electronic applications. We study the solution combustion synthesis process of Cu:NiO<sub>x</sub> using different molar ratios (w/o, 0.1 and 1.5) of fuel a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Apostolos Ioakeimidis, Ioannis T. Papadas, Eirini D. Koutsouroubi, Gerasimos S. Armatas, Stelios A. Choulis
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/db260364383b4a53b8984acf91c33020
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Low temperature solution combustion synthesis emerges as a facile method for the synthesis of functional metal oxides thin films for electronic applications. We study the solution combustion synthesis process of Cu:NiO<sub>x</sub> using different molar ratios (w/o, 0.1 and 1.5) of fuel acetylacetone (Acac) to oxidizer (Cu, Ni Nitrates) as a function of thermal annealing temperatures 150, 200, and 300 °C. The solution combustion synthesis process, in both thin films and bulk Cu:NiO<sub>x</sub>, is investigated. Thermal analysis studies using TGA and DTA reveal that the Cu:NiO<sub>x</sub> thin films show a more gradual mass loss while the bulk Cu:NiO<sub>x</sub> exhibits a distinct combustion process. The thin films can crystallize to Cu:NiO<sub>x</sub> at an annealing temperature of 300 °C, irrespective of the Acac/Oxidizer ratio, whereas lower annealing temperatures (150 and 200 °C) produce amorphous materials. A detail characterization study of solution combustion synthesized Cu:NiO<sub>x</sub>, including XPS, UV-Vis, AFM, and Contact angle measurements, is presented. Finally, 50 nm Cu:NiO<sub>x</sub> thin films are introduced as HTLs within the inverted perovskite solar cell device architecture. The Cu:NiO<sub>x</sub> HTL annealed at 150 and 200 °C provided PVSCs with limited functionality, whereas efficient triple-cation Cs<sub>0.04</sub>(MA<sub>0.17</sub>FA<sub>0.83</sub>)<sub>0.96</sub> Pb(I<sub>0.83</sub>Br<sub>0.17</sub>)<sub>3</sub>-based PVSCs achieved for Cu:NiO<sub>x</sub> HTLs for annealing temperature of 300 °C.