Multipolar robust optimization

We consider linear programs involving uncertain parameters and propose a new tractable robust counterpart which contains and generalizes several other models including the existing Affinely Adjustable Robust Counterpart and the Fully Adjustable Robust Counterpart. It consists in selecting a set of p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Walid Ben-Ameur, Adam Ouorou, Guanglei Wang, Mateusz Żotkiewicz
Formato: article
Lenguaje:EN
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://doaj.org/article/db2a8344ac1b40e4ab2437a593d34689
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:db2a8344ac1b40e4ab2437a593d34689
record_format dspace
spelling oai:doaj.org-article:db2a8344ac1b40e4ab2437a593d346892021-12-02T05:01:09ZMultipolar robust optimization2192-440610.1007/s13675-017-0092-4https://doaj.org/article/db2a8344ac1b40e4ab2437a593d346892018-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2192440621001088https://doaj.org/toc/2192-4406We consider linear programs involving uncertain parameters and propose a new tractable robust counterpart which contains and generalizes several other models including the existing Affinely Adjustable Robust Counterpart and the Fully Adjustable Robust Counterpart. It consists in selecting a set of poles whose convex hull contains some projection of the uncertainty set, and computing a recourse strategy for each data scenario as a convex combination of some optimized recourses (one for each pole). We show that the proposed multipolar robust counterpart is tractable and its complexity is controllable. Further, we show that under some mild assumptions, two sequences of upper and lower bounds converge to the optimal value of the fully adjustable robust counterpart. We numerically investigate a couple of applications in the literature demonstrating that the approach can effectively improve the affinely adjustable policy.Walid Ben-AmeurAdam OuorouGuanglei WangMateusz ŻotkiewiczElsevierarticle90C99Applied mathematics. Quantitative methodsT57-57.97Electronic computers. Computer scienceQA75.5-76.95ENEURO Journal on Computational Optimization, Vol 6, Iss 4, Pp 395-434 (2018)
institution DOAJ
collection DOAJ
language EN
topic 90C99
Applied mathematics. Quantitative methods
T57-57.97
Electronic computers. Computer science
QA75.5-76.95
spellingShingle 90C99
Applied mathematics. Quantitative methods
T57-57.97
Electronic computers. Computer science
QA75.5-76.95
Walid Ben-Ameur
Adam Ouorou
Guanglei Wang
Mateusz Żotkiewicz
Multipolar robust optimization
description We consider linear programs involving uncertain parameters and propose a new tractable robust counterpart which contains and generalizes several other models including the existing Affinely Adjustable Robust Counterpart and the Fully Adjustable Robust Counterpart. It consists in selecting a set of poles whose convex hull contains some projection of the uncertainty set, and computing a recourse strategy for each data scenario as a convex combination of some optimized recourses (one for each pole). We show that the proposed multipolar robust counterpart is tractable and its complexity is controllable. Further, we show that under some mild assumptions, two sequences of upper and lower bounds converge to the optimal value of the fully adjustable robust counterpart. We numerically investigate a couple of applications in the literature demonstrating that the approach can effectively improve the affinely adjustable policy.
format article
author Walid Ben-Ameur
Adam Ouorou
Guanglei Wang
Mateusz Żotkiewicz
author_facet Walid Ben-Ameur
Adam Ouorou
Guanglei Wang
Mateusz Żotkiewicz
author_sort Walid Ben-Ameur
title Multipolar robust optimization
title_short Multipolar robust optimization
title_full Multipolar robust optimization
title_fullStr Multipolar robust optimization
title_full_unstemmed Multipolar robust optimization
title_sort multipolar robust optimization
publisher Elsevier
publishDate 2018
url https://doaj.org/article/db2a8344ac1b40e4ab2437a593d34689
work_keys_str_mv AT walidbenameur multipolarrobustoptimization
AT adamouorou multipolarrobustoptimization
AT guangleiwang multipolarrobustoptimization
AT mateuszzotkiewicz multipolarrobustoptimization
_version_ 1718400859249836032