A mathematical model for the dynamics of SARS-CoV-2 virus using the Caputo-Fabrizio operator
The pandemic of SARS-CoV-2 virus remains a pressing issue with unpredictable characteristics which spread worldwide through human interactions. The current study is focusing on the investigation and analysis of a fractional-order epidemic model that discusses the temporal dynamics of the SARS-CoV-2...
Enregistré dans:
Auteurs principaux: | Tahir Khan, Roman Ullah, Gul Zaman, Jehad Alzabut |
---|---|
Format: | article |
Langue: | EN |
Publié: |
AIMS Press
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/db3b35b5ace54ad7b0e6ce6a106d5cf4 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Existence and uniqueness of positive solutions for nonlinear Caputo-Hadamard fractional differential equations
par: Ardjouni,Abdelouaheb
Publié: (2021) -
Existence Solution for Nonlinear System of Fractional Integrodifferential Equations of Volterra Type with Fractional Boundary Conditions
par: Faraj Y. Ishak
Publié: (2020) -
Mathematical analysis for the effect of voluntary vaccination on the propagation of Corona virus pandemic
par: W. Ahmad, et autres
Publié: (2021) -
Impulsive Caputo-Fabrizio fractional differential equations in b-metric spaces
par: Lazreg Jamal Eddine, et autres
Publié: (2021) -
Effective numerical technique for nonlinear Caputo-Fabrizio systems of fractional Volterra integro-differential equations in Hilbert space
par: Fatima Youbi, et autres
Publié: (2022)