Machine learned features from density of states for accurate adsorption energy prediction

Computational catalysis would strongly benefit from general descriptors applicable for predicting adsorption energetics. Here the authors propose a machine-learning approach for adsorption energy predictions based on learning the relevant descriptors in a surface atom's density of states as par...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Victor Fung, Guoxiang Hu, P. Ganesh, Bobby G. Sumpter
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Q
Accès en ligne:https://doaj.org/article/db4b29d6fa904989b00edcedcb18059e
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Computational catalysis would strongly benefit from general descriptors applicable for predicting adsorption energetics. Here the authors propose a machine-learning approach for adsorption energy predictions based on learning the relevant descriptors in a surface atom's density of states as part of the training.