A Meta-Analysis on Harmful Algal Bloom (HAB) Detection and Monitoring: A Remote Sensing Perspective

Algae serves as a food source for a wide range of aquatic species; however, a high concentration of inorganic nutrients under favorable conditions can result in the development of harmful algal blooms (HABs). Many studies have addressed HAB detection and monitoring; however, no global scale meta-ana...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rabia Munsaf Khan, Bahram Salehi, Masoud Mahdianpari, Fariba Mohammadimanesh, Giorgos Mountrakis, Lindi J. Quackenbush
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/db4bac565d084150926fcdb1fe2d315f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:db4bac565d084150926fcdb1fe2d315f
record_format dspace
spelling oai:doaj.org-article:db4bac565d084150926fcdb1fe2d315f2021-11-11T18:54:26ZA Meta-Analysis on Harmful Algal Bloom (HAB) Detection and Monitoring: A Remote Sensing Perspective10.3390/rs132143472072-4292https://doaj.org/article/db4bac565d084150926fcdb1fe2d315f2021-10-01T00:00:00Zhttps://www.mdpi.com/2072-4292/13/21/4347https://doaj.org/toc/2072-4292Algae serves as a food source for a wide range of aquatic species; however, a high concentration of inorganic nutrients under favorable conditions can result in the development of harmful algal blooms (HABs). Many studies have addressed HAB detection and monitoring; however, no global scale meta-analysis has specifically explored remote sensing-based HAB monitoring. Therefore, this manuscript elucidates and visualizes spatiotemporal trends in HAB detection and monitoring using remote sensing methods and discusses future insights through a meta-analysis of 420 journal articles. The results indicate an increase in the quantity of published articles which have facilitated the analysis of sensors, software, and HAB proxy estimation methods. The comparison across multiple studies highlighted the need for a standardized reporting method for HAB proxy estimation. Research gaps include: (1) atmospheric correction methods, particularly for turbid waters, (2) the use of analytical-based models, (3) the application of machine learning algorithms, (4) the generation of harmonized virtual constellation and data fusion for increased spatial and temporal resolutions, and (5) the use of cloud-computing platforms for large scale HAB detection and monitoring. The planned hyperspectral satellites will aid in filling these gaps to some extent. Overall, this review provides a snapshot of spatiotemporal trends in HAB monitoring to assist in decision making for future studies.Rabia Munsaf KhanBahram SalehiMasoud MahdianpariFariba MohammadimaneshGiorgos MountrakisLindi J. QuackenbushMDPI AGarticleharmful algal blooms (HABs)meta-analysisphytoplanktonremote sensingwater qualityScienceQENRemote Sensing, Vol 13, Iss 4347, p 4347 (2021)
institution DOAJ
collection DOAJ
language EN
topic harmful algal blooms (HABs)
meta-analysis
phytoplankton
remote sensing
water quality
Science
Q
spellingShingle harmful algal blooms (HABs)
meta-analysis
phytoplankton
remote sensing
water quality
Science
Q
Rabia Munsaf Khan
Bahram Salehi
Masoud Mahdianpari
Fariba Mohammadimanesh
Giorgos Mountrakis
Lindi J. Quackenbush
A Meta-Analysis on Harmful Algal Bloom (HAB) Detection and Monitoring: A Remote Sensing Perspective
description Algae serves as a food source for a wide range of aquatic species; however, a high concentration of inorganic nutrients under favorable conditions can result in the development of harmful algal blooms (HABs). Many studies have addressed HAB detection and monitoring; however, no global scale meta-analysis has specifically explored remote sensing-based HAB monitoring. Therefore, this manuscript elucidates and visualizes spatiotemporal trends in HAB detection and monitoring using remote sensing methods and discusses future insights through a meta-analysis of 420 journal articles. The results indicate an increase in the quantity of published articles which have facilitated the analysis of sensors, software, and HAB proxy estimation methods. The comparison across multiple studies highlighted the need for a standardized reporting method for HAB proxy estimation. Research gaps include: (1) atmospheric correction methods, particularly for turbid waters, (2) the use of analytical-based models, (3) the application of machine learning algorithms, (4) the generation of harmonized virtual constellation and data fusion for increased spatial and temporal resolutions, and (5) the use of cloud-computing platforms for large scale HAB detection and monitoring. The planned hyperspectral satellites will aid in filling these gaps to some extent. Overall, this review provides a snapshot of spatiotemporal trends in HAB monitoring to assist in decision making for future studies.
format article
author Rabia Munsaf Khan
Bahram Salehi
Masoud Mahdianpari
Fariba Mohammadimanesh
Giorgos Mountrakis
Lindi J. Quackenbush
author_facet Rabia Munsaf Khan
Bahram Salehi
Masoud Mahdianpari
Fariba Mohammadimanesh
Giorgos Mountrakis
Lindi J. Quackenbush
author_sort Rabia Munsaf Khan
title A Meta-Analysis on Harmful Algal Bloom (HAB) Detection and Monitoring: A Remote Sensing Perspective
title_short A Meta-Analysis on Harmful Algal Bloom (HAB) Detection and Monitoring: A Remote Sensing Perspective
title_full A Meta-Analysis on Harmful Algal Bloom (HAB) Detection and Monitoring: A Remote Sensing Perspective
title_fullStr A Meta-Analysis on Harmful Algal Bloom (HAB) Detection and Monitoring: A Remote Sensing Perspective
title_full_unstemmed A Meta-Analysis on Harmful Algal Bloom (HAB) Detection and Monitoring: A Remote Sensing Perspective
title_sort meta-analysis on harmful algal bloom (hab) detection and monitoring: a remote sensing perspective
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/db4bac565d084150926fcdb1fe2d315f
work_keys_str_mv AT rabiamunsafkhan ametaanalysisonharmfulalgalbloomhabdetectionandmonitoringaremotesensingperspective
AT bahramsalehi ametaanalysisonharmfulalgalbloomhabdetectionandmonitoringaremotesensingperspective
AT masoudmahdianpari ametaanalysisonharmfulalgalbloomhabdetectionandmonitoringaremotesensingperspective
AT faribamohammadimanesh ametaanalysisonharmfulalgalbloomhabdetectionandmonitoringaremotesensingperspective
AT giorgosmountrakis ametaanalysisonharmfulalgalbloomhabdetectionandmonitoringaremotesensingperspective
AT lindijquackenbush ametaanalysisonharmfulalgalbloomhabdetectionandmonitoringaremotesensingperspective
AT rabiamunsafkhan metaanalysisonharmfulalgalbloomhabdetectionandmonitoringaremotesensingperspective
AT bahramsalehi metaanalysisonharmfulalgalbloomhabdetectionandmonitoringaremotesensingperspective
AT masoudmahdianpari metaanalysisonharmfulalgalbloomhabdetectionandmonitoringaremotesensingperspective
AT faribamohammadimanesh metaanalysisonharmfulalgalbloomhabdetectionandmonitoringaremotesensingperspective
AT giorgosmountrakis metaanalysisonharmfulalgalbloomhabdetectionandmonitoringaremotesensingperspective
AT lindijquackenbush metaanalysisonharmfulalgalbloomhabdetectionandmonitoringaremotesensingperspective
_version_ 1718431674857947136