Machine Learning Model to Identify Sepsis Patients in the Emergency Department: Algorithm Development and Validation
Accurate stratification of sepsis can effectively guide the triage of patient care and shared decision making in the emergency department (ED). However, previous research on sepsis identification models focused mainly on ICU patients, and discrepancies in model performance between the development an...
Guardado en:
Autores principales: | Pei-Chen Lin, Kuo-Tai Chen, Huan-Chieh Chen, Md. Mohaimenul Islam, Ming-Chin Lin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/db4f7d1a0f004fad91523c388f3c115a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Actualización del bundle de reanimación inicial y monitorización integral de la perfusión tisular en la sepsis severa
por: Romero P,Carlos, et al.
Publicado: (2013) -
Síndrome de respuesta inflamatoria sistémica severa: ¿Es comparable a la sepsis severa?
por: Hernández P,Glenn, et al.
Publicado: (1999) -
Long-term cardiovascular complications following sepsis: is senescence the missing link?
por: Hamid Merdji, et al.
Publicado: (2021) -
Higher levels of IgA and IgG at sepsis onset are associated with higher mortality: results from the Albumin Italian Outcome Sepsis (ALBIOS) trial
por: Laura Alagna, et al.
Publicado: (2021) -
NEW ASPECTS OF SEPSIS AND SEPTIC SHOCK PATHOGENESIS IN CHILDREN. THE COMPLEMENT SYSTEM AS TARGET FOR AN EFFECTIVE THERAPY
por: A. P. Prodeus, et al.
Publicado: (2018)