Automated identification of clinical features from sparsely annotated 3-dimensional medical imaging

Abstract One of the core challenges in applying machine learning and artificial intelligence to medicine is the limited availability of annotated medical data. Unlike in other applications of machine learning, where an abundance of labeled data is available, the labeling and annotation of medical da...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Nadav Rakocz, Jeffrey N. Chiang, Muneeswar G. Nittala, Giulia Corradetti, Liran Tiosano, Swetha Velaga, Michael Thompson, Brian L. Hill, Sriram Sankararaman, Jonathan L. Haines, Margaret A. Pericak-Vance, Dwight Stambolian, Srinivas R. Sadda, Eran Halperin
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/db547242a9544aa0933b586e70820352
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:db547242a9544aa0933b586e70820352
record_format dspace
spelling oai:doaj.org-article:db547242a9544aa0933b586e708203522021-12-02T15:54:14ZAutomated identification of clinical features from sparsely annotated 3-dimensional medical imaging10.1038/s41746-021-00411-w2398-6352https://doaj.org/article/db547242a9544aa0933b586e708203522021-03-01T00:00:00Zhttps://doi.org/10.1038/s41746-021-00411-whttps://doaj.org/toc/2398-6352Abstract One of the core challenges in applying machine learning and artificial intelligence to medicine is the limited availability of annotated medical data. Unlike in other applications of machine learning, where an abundance of labeled data is available, the labeling and annotation of medical data and images require a major effort of manual work by expert clinicians who do not have the time to annotate manually. In this work, we propose a new deep learning technique (SLIVER-net), to predict clinical features from 3-dimensional volumes using a limited number of manually annotated examples. SLIVER-net is based on transfer learning, where we borrow information about the structure and parameters of the network from publicly available large datasets. Since public volume data are scarce, we use 2D images and account for the 3-dimensional structure using a novel deep learning method which tiles the volume scans, and then adds layers that leverage the 3D structure. In order to illustrate its utility, we apply SLIVER-net to predict risk factors for progression of age-related macular degeneration (AMD), a leading cause of blindness, from optical coherence tomography (OCT) volumes acquired from multiple sites. SLIVER-net successfully predicts these factors despite being trained with a relatively small number of annotated volumes (hundreds) and only dozens of positive training examples. Our empirical evaluation demonstrates that SLIVER-net significantly outperforms standard state-of-the-art deep learning techniques used for medical volumes, and its performance is generalizable as it was validated on an external testing set. In a direct comparison with a clinician panel, we find that SLIVER-net also outperforms junior specialists, and identifies AMD progression risk factors similarly to expert retina specialists.Nadav RakoczJeffrey N. ChiangMuneeswar G. NittalaGiulia CorradettiLiran TiosanoSwetha VelagaMichael ThompsonBrian L. HillSriram SankararamanJonathan L. HainesMargaret A. Pericak-VanceDwight StambolianSrinivas R. SaddaEran HalperinNature PortfolioarticleComputer applications to medicine. Medical informaticsR858-859.7ENnpj Digital Medicine, Vol 4, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Computer applications to medicine. Medical informatics
R858-859.7
spellingShingle Computer applications to medicine. Medical informatics
R858-859.7
Nadav Rakocz
Jeffrey N. Chiang
Muneeswar G. Nittala
Giulia Corradetti
Liran Tiosano
Swetha Velaga
Michael Thompson
Brian L. Hill
Sriram Sankararaman
Jonathan L. Haines
Margaret A. Pericak-Vance
Dwight Stambolian
Srinivas R. Sadda
Eran Halperin
Automated identification of clinical features from sparsely annotated 3-dimensional medical imaging
description Abstract One of the core challenges in applying machine learning and artificial intelligence to medicine is the limited availability of annotated medical data. Unlike in other applications of machine learning, where an abundance of labeled data is available, the labeling and annotation of medical data and images require a major effort of manual work by expert clinicians who do not have the time to annotate manually. In this work, we propose a new deep learning technique (SLIVER-net), to predict clinical features from 3-dimensional volumes using a limited number of manually annotated examples. SLIVER-net is based on transfer learning, where we borrow information about the structure and parameters of the network from publicly available large datasets. Since public volume data are scarce, we use 2D images and account for the 3-dimensional structure using a novel deep learning method which tiles the volume scans, and then adds layers that leverage the 3D structure. In order to illustrate its utility, we apply SLIVER-net to predict risk factors for progression of age-related macular degeneration (AMD), a leading cause of blindness, from optical coherence tomography (OCT) volumes acquired from multiple sites. SLIVER-net successfully predicts these factors despite being trained with a relatively small number of annotated volumes (hundreds) and only dozens of positive training examples. Our empirical evaluation demonstrates that SLIVER-net significantly outperforms standard state-of-the-art deep learning techniques used for medical volumes, and its performance is generalizable as it was validated on an external testing set. In a direct comparison with a clinician panel, we find that SLIVER-net also outperforms junior specialists, and identifies AMD progression risk factors similarly to expert retina specialists.
format article
author Nadav Rakocz
Jeffrey N. Chiang
Muneeswar G. Nittala
Giulia Corradetti
Liran Tiosano
Swetha Velaga
Michael Thompson
Brian L. Hill
Sriram Sankararaman
Jonathan L. Haines
Margaret A. Pericak-Vance
Dwight Stambolian
Srinivas R. Sadda
Eran Halperin
author_facet Nadav Rakocz
Jeffrey N. Chiang
Muneeswar G. Nittala
Giulia Corradetti
Liran Tiosano
Swetha Velaga
Michael Thompson
Brian L. Hill
Sriram Sankararaman
Jonathan L. Haines
Margaret A. Pericak-Vance
Dwight Stambolian
Srinivas R. Sadda
Eran Halperin
author_sort Nadav Rakocz
title Automated identification of clinical features from sparsely annotated 3-dimensional medical imaging
title_short Automated identification of clinical features from sparsely annotated 3-dimensional medical imaging
title_full Automated identification of clinical features from sparsely annotated 3-dimensional medical imaging
title_fullStr Automated identification of clinical features from sparsely annotated 3-dimensional medical imaging
title_full_unstemmed Automated identification of clinical features from sparsely annotated 3-dimensional medical imaging
title_sort automated identification of clinical features from sparsely annotated 3-dimensional medical imaging
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/db547242a9544aa0933b586e70820352
work_keys_str_mv AT nadavrakocz automatedidentificationofclinicalfeaturesfromsparselyannotated3dimensionalmedicalimaging
AT jeffreynchiang automatedidentificationofclinicalfeaturesfromsparselyannotated3dimensionalmedicalimaging
AT muneeswargnittala automatedidentificationofclinicalfeaturesfromsparselyannotated3dimensionalmedicalimaging
AT giuliacorradetti automatedidentificationofclinicalfeaturesfromsparselyannotated3dimensionalmedicalimaging
AT lirantiosano automatedidentificationofclinicalfeaturesfromsparselyannotated3dimensionalmedicalimaging
AT swethavelaga automatedidentificationofclinicalfeaturesfromsparselyannotated3dimensionalmedicalimaging
AT michaelthompson automatedidentificationofclinicalfeaturesfromsparselyannotated3dimensionalmedicalimaging
AT brianlhill automatedidentificationofclinicalfeaturesfromsparselyannotated3dimensionalmedicalimaging
AT sriramsankararaman automatedidentificationofclinicalfeaturesfromsparselyannotated3dimensionalmedicalimaging
AT jonathanlhaines automatedidentificationofclinicalfeaturesfromsparselyannotated3dimensionalmedicalimaging
AT margaretapericakvance automatedidentificationofclinicalfeaturesfromsparselyannotated3dimensionalmedicalimaging
AT dwightstambolian automatedidentificationofclinicalfeaturesfromsparselyannotated3dimensionalmedicalimaging
AT srinivasrsadda automatedidentificationofclinicalfeaturesfromsparselyannotated3dimensionalmedicalimaging
AT eranhalperin automatedidentificationofclinicalfeaturesfromsparselyannotated3dimensionalmedicalimaging
_version_ 1718385480379138048