Automated identification of clinical features from sparsely annotated 3-dimensional medical imaging
Abstract One of the core challenges in applying machine learning and artificial intelligence to medicine is the limited availability of annotated medical data. Unlike in other applications of machine learning, where an abundance of labeled data is available, the labeling and annotation of medical da...
Guardado en:
Autores principales: | Nadav Rakocz, Jeffrey N. Chiang, Muneeswar G. Nittala, Giulia Corradetti, Liran Tiosano, Swetha Velaga, Michael Thompson, Brian L. Hill, Sriram Sankararaman, Jonathan L. Haines, Margaret A. Pericak-Vance, Dwight Stambolian, Srinivas R. Sadda, Eran Halperin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/db547242a9544aa0933b586e70820352 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Imputation of the continuous arterial line blood pressure waveform from non-invasive measurements using deep learning
por: Brian L. Hill, et al.
Publicado: (2021) -
Cell-type-specific resolution epigenetics without the need for cell sorting or single-cell biology
por: Elior Rahmani, et al.
Publicado: (2019) -
The 2-Year Leakage Index and Quantitative Microaneurysm Results of the RECOVERY Study: Quantitative Ultra-Widefield Findings in Proliferative Diabetic Retinopathy Treated with Intravitreal Aflibercept
por: Amy S. Babiuch, et al.
Publicado: (2021) -
Sparse SYK and traversable wormholes
por: Elena Cáceres, et al.
Publicado: (2021) -
Sparse-PE: A Performance-Efficient Processing Engine Core for Sparse Convolutional Neural Networks
por: Mahmood Azhar Qureshi, et al.
Publicado: (2021)